304不锈钢点蚀行为的电化学阻抗谱研究
304 Stainless Steel Pitting Behavior by Means of Electrochemical Impedance Spectroscopy
查看参考文献19篇
文摘
|
综合运用动电位电化学阻抗谱(DEIS)和时间扫描模式下的电化学阻抗谱(TSEIS)研究了304不锈钢在3.5%(质量分数)NaCl溶液中的点蚀行为。DEIS的结果表明,在比点蚀电位0.15V负得多的电位0.02V下,亚稳态点蚀就已经开始,并且亚稳态蚀孔的产生与再钝化是随机的,DEIS测试得到的稳态点蚀电位比动电位极化法得到的点蚀破裂电位要负0.05V。TSEIS的结果表明,只有在钝化膜减薄到一定程度后,点蚀的形核才能发生。通过对等效电路中元件参数的分析,揭示了点蚀发展过程中双电层和钝化膜结构的变化特点。 |
其他语种文摘
|
Pitting behavior of 304 stainless steel in 3.5% (mass fraction) NaCl solution was investigated by dynamic potential electrochemical impedance spectroscopy (DEIS) and time scan electrochemical impedance spectroscopy (TSEIS). The results of DEIS show that metastable pits emerge at the potential (0.02V) which is more negative than the pitting potential (0.15V), and the generation and passivation of metastable pits are stochastic. The steady pitting potential which got from DEIS is negative than breakdown potential which got from dynamic potential polarization by 0.05V. The results of TSEIS indicate that pitting nucleation can happen just when the thickness of passivation film has been reduced to some extent. It reveals the characteristics of the structure of electric double layer and passivation film by analyzing element parameter of the equivalent circuit. |
来源
|
材料工程
,2014(6):68-73 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2014.06.013
|
关键词
|
304不锈钢
;
点蚀
;
动电位电化学阻抗谱
;
时间扫描电化学阻抗谱
|
地址
|
南昌航空大学, 轻合金加工科学与技术国防重点学科实验室, 南昌, 330063
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金资助项目
|
文献收藏号
|
CSCD:5157535
|
参考文献 共
19
共1页
|
1.
桥本政哲(日).
不锈钢及其应用,2011:226-238
|
CSCD被引
2
次
|
|
|
|
2.
杜楠. SO_42-浓度对304不锈钢在NaCl溶液中点蚀行为影响的研究.
材料工程,2012(7):64-70
|
CSCD被引
3
次
|
|
|
|
3.
丁宝峰. 304不锈钢点蚀孔边应力集中的有限元分析.
第四届全国腐蚀大会论文集,2003
|
CSCD被引
1
次
|
|
|
|
4.
Li H B. Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels.
Metallurgy and Materials,2009,16(5):517-524
|
CSCD被引
2
次
|
|
|
|
5.
Li G M. Pitting corrosion behavior of stainless steel 304 in carbon diocide journal of environments.
Iron and Steel Research,2004,11(4):47-51
|
CSCD被引
2
次
|
|
|
|
6.
Jia Z J. Study on pitting process of 316L stainless steel by means of staircase potential electrochemical impedance spectroscopy.
Metallurgy and Materials,2011,18(1):48-52
|
CSCD被引
2
次
|
|
|
|
7.
Darowicki K. Evaluation of pitting corrosion by means of dynamic electrochemical impedance spectroscopy.
Electrochimica Acta,2004,49(17):2909-2918
|
CSCD被引
14
次
|
|
|
|
8.
Nagarajan S. Pitting corrosion studies of super austenitic stainless steels in natural sea water using dynamic electrochemical impedance spectroscopy.
Journal of Applied Electrochemistry,2007,37(2):195-201
|
CSCD被引
11
次
|
|
|
|
9.
闫瑞霞. 敏化态00Cr12Ti的动电位电化学阻抗谱研究.
中国腐蚀与防护学报,2011,31(6):419-424
|
CSCD被引
2
次
|
|
|
|
10.
梁成浩. 304不锈钢敏化热处理对耐蚀性的影响.
化工机械,1995,22(2):87-90
|
CSCD被引
5
次
|
|
|
|
11.
曲炎淼. 不同组织X80钢点蚀电化学行为研究.
第五届全国腐蚀大会论文集,2009
|
CSCD被引
1
次
|
|
|
|
12.
.
GB/T 17899-1999, 不锈钢点蚀电位测量方法
|
CSCD被引
1
次
|
|
|
|
13.
Zhang G Z. Evolution of the electrochemical characteristics during pitting corrosion of pure aluminum in sodium chloride solution.
Acta Metallurgica Sinica,2005,18(4):525-532
|
CSCD被引
1
次
|
|
|
|
14.
Jafarzadeh K. EIS study on pitting corrosion of AA5083-H321 aluminum-magnesium alloy in stagnant 3.5%NaCl solution.
Journal of Materials Science,2008,24(2):215-219
|
CSCD被引
1
次
|
|
|
|
15.
Li W S. Electrochemical investigations on formation and pitting susceptibility of passive films on iron and iron-based alloys.
International Journal of Electrochemical Science,2007,2(8):627-663
|
CSCD被引
4
次
|
|
|
|
16.
Burstein G T. Origins of pitting corrosion.
Corrosion Engineering Science and Technology,2004,39(1):25-30
|
CSCD被引
20
次
|
|
|
|
17.
曹楚南.
电化学阻抗谱导论,2002:190-194
|
CSCD被引
5
次
|
|
|
|
18.
曹楚南.
腐蚀电化学原理(2版),2004:196-201
|
CSCD被引
2
次
|
|
|
|
19.
赵卫民. 镍基合金涂层包覆钢腐蚀失效过程的电化学阻抗谱研究.
金属学报,2005,41(2):178-184
|
CSCD被引
11
次
|
|
|
|
|