浮式平台横荡运动对水下柔性立管涡激振动的影响
Impact of floating top sway on the vortex-induced vibration of submarine riser
查看参考文献22篇
文摘
|
由于深水浮式平台的运动幅度较固定式平台增大,其运动与下部立管的动力耦合变得更加明显。研究了上部平台运动对水下立管涡激振动的影响,基于有限元数值模拟,建立了与结构运动耦合的立管尾迹流场的涡激升力、流体阻力模型,进行了“平台运动-立管涡激振动”整体系统的动响应数值模拟,分析了平台横荡运动的幅值、频率等因素对水下立管涡激振动的影响。结果表明,上部平台的振动会在沿着立管展向传播的过程中被放大(称为响应放大) ; 与不考虑平台运动相比,立管的动响应位移增大了多倍,而且振幅放大倍数随着模态阶数的降低而增大; 平台横荡振幅越大,立管振动幅值也越大,但是振幅放大倍数的变化不明显。 |
其他语种文摘
|
The dynamic coupling between floating top and submarine riser becomes more remarkable due to larger fluctuation amplitude of deeper water floating platform,compared to fixed platform in shallow water. The impacts of top end motion on riser vortex-induced vibration (VIV) are explored. A coupling hydrodynamic force approach,regarding vortex-induced lift force along with fluid drag force, is developed,which essentially depends on instantaneous movement of riser. Then the dynamic characters of the integrated system including both floating top end and a riser undergoing VIV are examined by means of finite element numerical simulations. The influences of the amplitude and frequency of platform sway on riser VIV are presented. An interesting phenomenon,called nonlinear amplification,is observed that the top end vibration may be amplified as propagating from top to bottom end along riser axial span. Our numerical results indicate that riser displacement,compared to the case without top movement,becomes larger. Moreover,nonlinear amplification would get more pronounced as the number of mode order falls. However,its value would not significantly change as sway amplitude of top end increases,though the absolute amplitude of riser displacement may get larger. |
来源
|
海洋工程
,2014,32(3):8-13,27 【扩展库】
|
关键词
|
横荡
;
流固耦合
;
立管
;
涡激振动
|
地址
|
中国科学院力学研究所, 中国科学院流固耦合系统力学重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-9865 |
学科
|
海洋学 |
基金
|
国家自然科学基金重点项目
|
文献收藏号
|
CSCD:5152598
|
参考文献 共
22
共2页
|
1.
Heurtier J M. Coupled dynamic response of moored FPSO with risers.
Proceedings of the Eleventh International Offshore and Polar Engineering Conference,2001:17-22
|
CSCD被引
2
次
|
|
|
|
2.
Stansberg C T. Challenges in deep water experiments: Hybrid approach.
Journal of Offshore Mechanics and Arctic Engineering,2002,124:91-96
|
CSCD被引
21
次
|
|
|
|
3.
娄敏. 浮式装置升沉及横荡运动下海洋立管动力响应研究.
中国海洋平台,2010,25(4):14-18
|
CSCD被引
3
次
|
|
|
|
4.
谷家扬. 随机波浪中张力腿平台耦合运动及系泊系统特性研究.
海洋工程,2012,30(4):42-48
|
CSCD被引
3
次
|
|
|
|
5.
Tahara A. Hull /mooring /riser coupled dynamic analysis and sensitivity study of a tanker-based FPSO.
Applied Ocean Research,2003,25:367-382
|
CSCD被引
7
次
|
|
|
|
6.
Chen X H. Coupled dynamic analysis of a mini TLP: Comparison with measurements.
Ocean Engineering,2006,33:93-117
|
CSCD被引
9
次
|
|
|
|
7.
王东耀. 在平台振荡条件下TLP张力腿的涡激非线性响应.
海洋学报,1998,20(5):119-128
|
CSCD被引
11
次
|
|
|
|
8.
雷松. FDPSO立管涡激振动响应分析.
工程力学,2010,27(S1):294-298
|
CSCD被引
6
次
|
|
|
|
9.
Garrett D L. Coupled analysis of floating production systems.
Ocean Engineering,2005,32:802-816
|
CSCD被引
16
次
|
|
|
|
10.
Spanos P D. Coupled analysis of a spar structure: Monte Carlo and statistical linearization solutions.
Journal of Offshore Mechanics and Arctic Engineering,2005,127(1):11-16
|
CSCD被引
12
次
|
|
|
|
11.
Ormberg H. Coupled analysis of vessel motions and mooring and riser system dynamics.
Proceedings of the 16th international conference on OMAE,1997:91-100
|
CSCD被引
1
次
|
|
|
|
12.
Kim M H. Variability of spar motion analysis against various design methodologies /parameters.
Proc 20th Offshore Mech Artic Eng. Conf. OMAE01-OFT1063,2001
|
CSCD被引
1
次
|
|
|
|
13.
Wichers J E W.
DeepStar-CTR 4401 Benchmark Model Test. Technical Report No. 16417-1-OB,2001
|
CSCD被引
2
次
|
|
|
|
14.
徐万海. 深水张力腿平台与系泊系统的耦合动力响应.
振动与冲击,2009,28(2):145-150
|
CSCD被引
17
次
|
|
|
|
15.
Li Binbin. Fully coupled effects of hull,mooring and risers model in time domain based on an innovative deep draft Multi-Spar.
China Ocean Engineering,2010,24(2):219-233
|
CSCD被引
5
次
|
|
|
|
16.
Lee H H. Analytical solution on the surge motion of tension-leg twin platform structural systems.
Ocean Engineering,2000,27:393-415
|
CSCD被引
6
次
|
|
|
|
17.
Tahar A. Coupled-dynamic analysis of floating structures with polyester mooring lines.
Ocean Engineering,2008,35(17/18):1676-1685
|
CSCD被引
26
次
|
|
|
|
18.
Bosman R L M. Elastic modulus characteristics of polyester mooring ropes.
Proceedings of the Annual Offshore Technology Conference,1999:1246-1251
|
CSCD被引
2
次
|
|
|
|
19.
Govardhan R. Critical mass in vortex-induced vibration of a cylinder.
European Journal of Mechanics B/ Fluids,2004,23:17-27
|
CSCD被引
9
次
|
|
|
|
20.
Vikestad K. Added mass and oscillatory frequency for a circular cylinder subjected to vortex-induced vibrations and external disturbance.
Journal of Fluids and Structures,2000,4:1071-1088
|
CSCD被引
17
次
|
|
|
|
|