生物炭对盐碱土氮淋溶的影响
Effect of Biochar Amendment on Nitrogen Leaching in Saline Soil
查看参考文献41篇
文摘
|
生物炭对某些高度风化的热带土壤和温带酸性土壤有改善土壤结构,减少营养元素淋失的作用,但关于温带干旱区的盐碱土的改良效果却很少报道。以新疆绿洲盐碱土为对象,研究玉米秸秆生物炭对氮淋溶的影响。采用室内土柱淋滤试验,土柱包含炭土比(W/W)0%、1%、5%和10%四个处理,模拟大气降雨,定期收集淋滤液,分析其中的氮素指标。结果显示,5%和10%添加比例分别减少了土壤氨态氮的淋失量31.14%和52.43%,1%的添加比例增加了铵态氮淋失。对比空白,10%处理的铵态氮、硝态氮和总氮减少淋失量分别达到52.43%、50.01%和33.83%,1%和5%处理土柱的硝态氮和总氮在试验10 d内(降雨量140 mm)就基本淋失完,而10%处理土柱则显得较为平缓,几乎到25 d(降雨量290 mm)时才基本淋失完。四个土柱的铵态氮的淋失都较为平缓。另外,生物炭可以减少土柱的溶液淋失量(20.95%),增加土壤持水能力。上述结果表明,生物炭施用于干旱区盐碱土能明显减少硝态氮和总氮淋失并延长其在土壤中的停留时间,增强土壤的持续供氮能力。 |
其他语种文摘
|
Biochar has been showed to improve soil structure and reduce nutrient leaching in highly weathered tropical soils and acidic temperate soils. However, there is little information available about the effect of biochar on temperate alkaline and/or saline soils in arid areas. In a laboratory study, ammonium and nitrate in soil leachate were monitored at different simulated precipitation after treatment with biochar. An alkaline soil was collected from Kashgar oasis, Xinjiang autonomous region. Biochar was produced from corn stover at 550 ℃, and mixed thoroughly with the soil at 0%, 1.0%, 5.0% and 10.0%(W/W)ratio. Compared with the control, applications of biochar at 5% and 10% reduced ammonium leaching by 31.14% and 52.43%, respectively, while biochar addition at 1% increased ammonium leaching by 85.95%. Accumulated leaching of ammonium-nitrogen increased with accumulated precipitation. The leaching losses of nitrate-nitrogen and total nitrogen were reduced by 24.79% and 38.19%, 50.01% and 16.13%, and 29.98% and 33.83% for 1.0%, 5.0% and 10.0% biochar additions, respectively, as compared with the control. The leaching of nitrate-nitrogen and total nitrogen occurred most during the first three precipitation events or about the first 140 mm of precipitation, and phased out at about 190 mm precipitation in 0%, 1.0%, and 5.0% biochar treatments. However, this phaseout was postponed at about 290 mm precipitationin in 10% biochar treatment. The application of biochar also increased soil water-holding capacity by an average of 20.95%. These results indicate that biochar application in saline and/or alkaline soils in arid areas could significantly reduce the leaching losses of nitrogen and enhance soil water holding capacity. |
来源
|
农业环境科学学报
,2014,33(5):972-977 【核心库】
|
关键词
|
生物炭
;
玉米秸秆
;
盐碱化
;
硝态氮
;
总氮
|
地址
|
1.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550002
2.
贵州师范大学, 贵阳, 550001
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1672-2043 |
学科
|
环境污染及其防治 |
基金
|
中国科学院战略性先导科技专项
;
贵州省农业科技攻关项目
;
中科院院地合作和科技支疆项目
;
国家重大科学研究计划
;
中国科学院贵阳地球化学研究所环境地球化学国家重点实验室基金
;
贵州国际科技合作计划项目
|
文献收藏号
|
CSCD:5149944
|
参考文献 共
41
共3页
|
1.
Galloway J N. The nitrogen cascade.
Bioscience,2003,53(4):341-356
|
CSCD被引
214
次
|
|
|
|
2.
Garnett T. Root based approaches to improving nitrogen use efficiency in plants.
Plant, Cell & Environment,2009,32(9):1272-1283
|
CSCD被引
49
次
|
|
|
|
3.
Sylvester-Bradley R. Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency.
Journal of Experimental Botany,2009,60(7):1939-1951
|
CSCD被引
32
次
|
|
|
|
4.
Hirel B. The challenge of improving nitrogen use efficiency in crop plants:Towards a more central role for genetic variability and quantitative genetics within integrated approaches.
Journal of Experimental Botany,2007,58(9):2369-2387
|
CSCD被引
93
次
|
|
|
|
5.
Cassman K G. Agroecosystems,nitrogenuse efficiency,and nitrogen management.
AMBIO:A Journal of the Human Environment,2002,31(2):132-140
|
CSCD被引
103
次
|
|
|
|
6.
Raun W R. Improving nitrogen use efficiency for cereal production.
Agronomy Journal,1999,91(3):357-363
|
CSCD被引
124
次
|
|
|
|
7.
中华人民共和国国家统计局.
中国统计年鉴:2012,2012
|
CSCD被引
1
次
|
|
|
|
8.
Zhu Z L. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies.
Nutrient Cycling in Agroecosystems,2002,63(2/3):117-127
|
CSCD被引
303
次
|
|
|
|
9.
朱兆良. 中国土壤氮素研究.
土壤学报,2008,45(5):778-783
|
CSCD被引
352
次
|
|
|
|
10.
Zheng H. Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil.
Geoderma,2013,206:32-39
|
CSCD被引
54
次
|
|
|
|
11.
Huang X P. The characteristics of nutrients and eutrophication in the Pearl River estuary, South China.
Marine Pollution Bulletin,2003,47(1):30-36
|
CSCD被引
58
次
|
|
|
|
12.
Feleke Z. A bio-electrochemical reactor coupled with adsorber for the removal of nitrate and inhibitory pesticide.
Water research,2002,36(12):3092-3102
|
CSCD被引
16
次
|
|
|
|
13.
Lehmann J.
Biochar for environmental management:Science and technology,2009
|
CSCD被引
25
次
|
|
|
|
14.
Clough T J. Biochar and the nitrogen cycle:Introduction.
Journal of Environmental Quality,2010,39(4):1218-1223
|
CSCD被引
58
次
|
|
|
|
15.
Dempster D N. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil.
Plant and Soil,2012,354(1/2):311-324
|
CSCD被引
116
次
|
|
|
|
16.
Bruun E W. Nitrogen and carbon leaching in repacked sandy soil with added fine particulate biochar.
Soil Science Society of America Journal,2012,76(4):1142-1148
|
CSCD被引
4
次
|
|
|
|
17.
Laird D A. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil.
Geoderma,2010,158(3/4):443-449
|
CSCD被引
233
次
|
|
|
|
18.
Gaskin J W. Effect of low-temperature pyrolysis conditions on biochar for agricultural use.
Transactions of the Asabe,2008,51(6):2061-2069
|
CSCD被引
159
次
|
|
|
|
19.
Uzoma K C. Effect of cow manure biochar on maize productivity under sandy soil condition.
Soil Use and Management,2011,27(2):205-212
|
CSCD被引
110
次
|
|
|
|
20.
Yuan J H. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol.
Soil Use and Management,2011,27(1):110-115
|
CSCD被引
134
次
|
|
|
|
|