氨氧化细菌和氨氧化古菌在百花湖沉积物中的垂直分布
Vertical Distribution of Ammonia Oxidizing Bacteria (AOB)and Ammonia Oxidizing Archaea (AOA)in the Sediments of Lake Baihua
查看参考文献27篇
文摘
|
采用定量氨单加氧酶基因(amoA)的荧光定量PCR(qPCR)方法,分析了氨氧化细菌(AOB)和氨氧化古菌(AOA)在百花湖沉积物中的垂直分布。以氨单加氧酶基因(amoA)数量来衡量氨氧化细菌(AOB)和氨氧化古菌(AOA),结果表明:百花湖沉积物中AOA 的amoA 基因数量在1.74×10~5 ~2.00×10~6拷贝/克沉积物(湿重)之间,且22~30 cm 的各层沉积物中, AOA 的数量是1~21 cm 各层沉积物的2倍左右;AOB 的amoA 基因在百花湖沉积物中的数量随深度的增加变化不大,其拷贝数在6.10×10~6 ~3.88×10~7拷贝/g 沉积物(湿重)之间;AOB 与AOA 的amoA 基因的比例在浅层沉积物和深层沉积物中存在一定的差异。这些结果表明AOB 和AOA 都参与百花湖沉积物中的氨氧化作用,从两类微生物的数量来看,AOB 是参与百花湖沉积物中氨氧化作用的主要微生物,而AOA 对氨氧化作用的贡献则随着沉积物深度的增加而提高。 |
其他语种文摘
|
The vertical distributions of ammonia-oxidizing bacteria (AOB)and ammonia-oxidizing archaea (AOA)in the sediments of Lake Baihua were analyzed using the qPCR method.Abundances of AOA and AOB were analyzed in terms of the amoA gene copy number.The results showed that the numbers of AOA amoA gene were between 1.74×10~5 ~2.00×10~6 copies/gram sediment (wet),with significant differences between in shallow and deep sediments. In contrast,the quantities of AOB amoA gene were 6.10×10~6 ~3.88×10~7 copies/gram sediment (wet) with no obvious variation in sediment layers of different depths.The ratios of AOB and AOA such changed within different sediment layers.These results indicated that both AOB and AOA participated in the ammonia oxidizing processes in sediments of the Lake Baihua.We concluded that AOB is the primary ammonia oxidizing microorganism because of its high abundance,while AOA plays a more important role in deep than in shallow sediments of the Lake Baihua. |
来源
|
矿物岩石地球化学通报
,2014,33(2):221-225 【核心库】
|
DOI
|
10.3969/j.issn.1007-2802.2014.02.010
|
关键词
|
氨氧化细菌
;
氨氧化古菌
;
沉积物
;
荧光定量PCR
;
百花湖
|
地址
|
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2802 |
学科
|
行业污染、废物处理与综合利用 |
基金
|
环境地球化学国家重点实验室基金资助项目
;
贵州省科技厅项目
;
贵州省国际合作项目
|
文献收藏号
|
CSCD:5142530
|
参考文献 共
27
共2页
|
1.
Kowalchuk G A. Ammonia-oxidizing bacteria:A model for molecular microbial ecology.
Annual Review of Microbiology,2001,55(1):485-529
|
CSCD被引
145
次
|
|
|
|
2.
Hu Z. Impact of metal sorption and internalization on nitrification inhibition.
Environ. Sci.Tech,2003,37(4):728-734
|
CSCD被引
11
次
|
|
|
|
3.
Choi O. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria.
Environ. Sci.Tech,2008,42(12):4583-4588
|
CSCD被引
66
次
|
|
|
|
4.
Venter J C. Environmental genome shotgun sequencing of the Sargasso sea.
Science,2004,304(5667):66-74
|
CSCD被引
180
次
|
|
|
|
5.
Treusch A H. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling.
Environmental Microbiology,2005,7(12):1985-1995
|
CSCD被引
75
次
|
|
|
|
6.
Konneke M. Isolation of an autotrophic ammonia-oxidizing marine archaeon.
Nature,2005,437(7058):543-546
|
CSCD被引
238
次
|
|
|
|
7.
Dela Torre J R. Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol.
Environmental Microbiology,2008,10(3):810-818
|
CSCD被引
30
次
|
|
|
|
8.
Hatzenpichler R. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring.
Proceedings of the National Academy of Sciences of the United States of America,2008,105(6):2134-2139
|
CSCD被引
59
次
|
|
|
|
9.
Erguder T H. Environmental factors shaping the ecological niches of ammonia-oxidizing archaea.
Fems Microbiology Reviews,2009,33(5):855-869
|
CSCD被引
68
次
|
|
|
|
10.
Reigstad L J. Nitrification in terrestrial hot springs of Iceland and Kamchatka.
Fems Microbiology Ecology,2008,64(2):167-174
|
CSCD被引
25
次
|
|
|
|
11.
Park S J. Comparative analysis of archaeal 16S rRNA and amoA genes to estimate the abundance and diversity of ammonia-oxidizing archaea in marine sediments.
Extremophiles,2008,12(4):605-615
|
CSCD被引
18
次
|
|
|
|
12.
Beman J M. Distribution and diversity of archaeal ammonia monooxygenase genes associated with corals.
Applied and Environmental Microbiology,2007,73(17):5642-5647
|
CSCD被引
10
次
|
|
|
|
13.
Adair K L. Evidence that ammonia-oxidizing archaea are more abundant than ammonia-oxidizing bacteria in semiarid soils of northern Arizona, USA.
Microbial Ecology,2008,56(3):420-426
|
CSCD被引
26
次
|
|
|
|
14.
Leininger S. Archaea predominate among ammonia-oxidizing prokaryotes in soils.
Natur,2006,442(7104):806-809
|
CSCD被引
244
次
|
|
|
|
15.
Wei B. Comparison of the community structures of ammonia-oxidizing bacteria and archaea in rhizoplanes of floating aquatic macrophytes.
Microbiological Research,2011,166(6):468-474
|
CSCD被引
8
次
|
|
|
|
16.
Santoro A E. Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary.
Environmental Microbiology,2008,10(4):1068-1079
|
CSCD被引
36
次
|
|
|
|
17.
Herrmann M. Ammonium availability affects the ratio of ammonia-oxidizing bacteria to ammonia-oxidizing archaea in simulated creek ecosystems.
Applied and Environmental Microbiology,2011,77(5):1896-1899
|
CSCD被引
8
次
|
|
|
|
18.
Wuchter C. Archaeal nitrification in the ocean.
Proceedings of the National Academy of Sciences,2006,103(33):12317-12322
|
CSCD被引
69
次
|
|
|
|
19.
Jia Z. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil.
Environmental Microbiology,2009,11(7):1658-1671
|
CSCD被引
31
次
|
|
|
|
20.
Di H J. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils.
Nature Geosci,2009,2(9):621-624
|
CSCD被引
97
次
|
|
|
|
|