北京市景观可达性与住宅价格空间关联
Spatial correlation analysis of landscape accessibility and residential housing price in Beijing
查看参考文献34篇
文摘
|
随着城市居民对住宅环境要求的不断提高,城市景观对城市住宅价格分异影响日趋显著。分析景观对住宅价格分异格局的影响,可为城市住宅空间结构的规划提供依据,为规划与管理部门提供决策参考。以北京城区二手房小区为样本,基于ArcGIS空间分析方法和特征价格模型,探讨景观因素对北京市住宅价格空间分异格局的影响。以主流房地产交易网站二手商品房报价资料为基础数据,共采集到2012年1月北京市城六区有效住宅小区样本3174个,对住宅样点进行空间化处理,并建立住宅空间信息数据库。运用密度分析、空间插值等方法,分析北京市住宅空间分布特征与价格空间分异格局。核密度分布图显示:北京市住宅空间分布呈现显著的向心化与离心化并存现象,总体上以天安门为中心向周边呈衰减趋势,在地铁转换站点形成了多个集聚次中心。在此基础上,从住宅属性、交通因素、区位特征等方面选择主要解释变量,构建地理加权回归模型,对住宅价格影响因素进行分析,重点探讨景观可达性(如绿地、水景、山景等)与住宅价格的关联。结果表明:次中心与住宅价格关联最为显著,绿地、水景、山景与住宅价格存在一定程度关联。其中,山景和高绿化率对住宅价格增效明显;由于水质较差,北京城六区内河流与住宅价格存在负相关;污水处理以及丧葬场所等污染源与住宅价格也存在显著负相关。远离污染源、靠近宜人景观、低容积率、高绿化率是居民选择住宅的需求。 |
其他语种文摘
|
Location of urban housing directly affects housing price. Choice of housing involves considerations of various public service facilities such as schools, job accessibilities, among many others, which have been widely discussed in existing literature. In this paper, we explore the spatial correlation of landscape accessibility with housing price in Beijing. Based on ArcGIS spatial analysis method and geographically weighted regression model, this paper examines the spatial heterogeneity and the main determinants of the second-hand housing prices in the urban area of Beijing. Through major real estate dealer websites, we collected the second-hand housing data on prices in January 2012 for downtown Beijing, with a total number of 3174 samples. After establishing the housing spatial database, spatial interpolation and kernel density estimation are applied to explore the spatial distribution and heterogeneity of housing price. The kernel density map shows that the residential space in downtown Beijing has evident agglomeration characteristics in general, that is, density decreases gradually from Tian'anmen Square to the periphery. High density also occurs at sub-centers formed near the subway transfer stations, and the sub-centers in Shijingshan and Tongzhou have begun to take shape. With the help of spatial interpolation analysis in ArcGIS, we mapped the spatial pattern of housing price in Beijing. It can be clearly seen from the result that housing price also decreases from city center to the periphery, which is similar to the spatial pattern of housing density. Housing price reaches the peak within the Second Ring Road, with some high price sub-centers emerge between the 3rd and the 4th Ring Road or at the outer suburban districts along the subway lines. Finally, by using geographically weighted regression model, we analyzed the influencing factors of housing price, including traffic factors, locational features, maintenance cost and landscape accessibility (green space coverage, distance to the nearest lake or river, distance to the nearest mountain) and so on. The results show that the distance to sub-centers has the most significant impact on housing price, and there is a certain degree of correlation between landscape accessibility and housing price. Specifically, houses with high greening rate and those located near a mountain is much more expensive; due to the poor water quality, waterscape has a negative impact on housing price; sewage treatment plants, burial grounds and other sources of pollution also exert negative impact on housing price. People prefer houses far from sources of pollution and near pleasant landscape features; low plot ratio and high green space coverage are also favored. The spatial correlation analysis of landscape accessibility and residential housing prices provides a foundation for the planning of urban residential space and references for the planning and management departments of the city government. |
来源
|
地理科学进展
,2014,33(4):488-498 【核心库】
|
关键词
|
地理加权回归
;
景观可达性
;
住宅价格
;
北京
|
地址
|
中国科学院大学资源与环境学院, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-6301 |
学科
|
自然地理学 |
基金
|
国家自然科学基金项目
;
中国科学院大学2012年度校长基金项目。
|
文献收藏号
|
CSCD:5131390
|
参考文献 共
34
共2页
|
1.
李志. 基于GWR模型的南京市住宅地价影响因素及其边际价格作用研究.
中国土地科学,2009,23(10):20-25
|
CSCD被引
22
次
|
|
|
|
2.
卢茜. 基于交通可达性的上海郊区新城房价研究.
上海师范大学学报:自然科学版,2010,39(4):426-431
|
CSCD被引
3
次
|
|
|
|
3.
吕萍. 基于GWR模型的北京市住宅用地价格影响因素及其空间规律研究.
经济地理,2010,30(3):472-478
|
CSCD被引
40
次
|
|
|
|
4.
石忆邵. 大型公园绿地对住宅价格的时空影响效应——以上海市黄兴公园绿地为例.
地理研究,2010,29(3):510-520
|
CSCD被引
18
次
|
|
|
|
5.
汤庆园. 基于地理加权回归的上海市房价空间分异及其影响因子研究.
经济地理,2012,32(2):52-58
|
CSCD被引
54
次
|
|
|
|
6.
王松涛. 公共服务设施可达性及其对新建住房价格的影响——以北京中心城为例.
地理科学进展,2007,26(6):78-85
|
CSCD被引
27
次
|
|
|
|
7.
王兴中. 城市居住空间结构的演变与社会区域划分研究.
城市问题,1995(1):15-20
|
CSCD被引
10
次
|
|
|
|
8.
温海珍. 城市景观对住宅价格的影响—以杭州市为例.
地理研究,2012,31(10):1806-1814
|
CSCD被引
26
次
|
|
|
|
9.
吴秀芹.
ArcGIS 9地理信息系统应用与实践,2007
|
CSCD被引
19
次
|
|
|
|
10.
尹海伟. 上海城市绿地宜人性对房价的影响.
生态学报,2009,29(8):4492-4500
|
CSCD被引
18
次
|
|
|
|
11.
张文忠. 北京市区居住环境的区位优势度分析.
地理学报,2005,60(1):115-121
|
CSCD被引
44
次
|
|
|
|
12.
张晓平. 北京市办公用地投标租金空间分异与影响因素.
经济地理,2013,33(3):73-78
|
CSCD被引
5
次
|
|
|
|
13.
钟海玥. 武汉市南湖景观对周边住宅价值的影响——基于Hedonic模型的实证研究.
中国土地科学,2009,23(12):63-68
|
CSCD被引
13
次
|
|
|
|
14.
邹利林. 中国城市住宅价格时空演变研究进展与展望.
地理科学进展,2013,32(10):1479-1489
|
CSCD被引
19
次
|
|
|
|
15.
Alonso W.
Location and land use: toward a general theory of land rent,1964
|
CSCD被引
32
次
|
|
|
|
16.
Bolitzer B. The impact of open spaces on property values in Portland, Oregon.
Journal of Environmental Management,2000,59(3):185-193
|
CSCD被引
9
次
|
|
|
|
17.
Case K E. Forecasting prices and excess returns in the housing market.
Real Estate Economics,1990,18(3):253-273
|
CSCD被引
2
次
|
|
|
|
18.
Chiesura A. The role of urban parks for the sustainable city.
Landscape and Urban Planning,2004,68(1):129-138
|
CSCD被引
51
次
|
|
|
|
19.
Choy L H T. Modeling Hong Kong real estate prices.
Journal of Housing and the Built Environment,2007,22(4):359-368
|
CSCD被引
1
次
|
|
|
|
20.
Damigos D. The value of view through the eyes of the real estate experts: a fuzzy Delphi approach.
Landscape and Urban Planning,2011,101(2):171-178
|
CSCD被引
1
次
|
|
|
|
|