扬州市住宅价格空间分异的影响因素与驱动机制
Determinants and dynamics of spatial differentiation of housing price in Yangzhou
查看参考文献41篇
文摘
|
构建包含20个评价因子、4个影响因素和4个预期修正因素在内的城市住宅价格空间分异影响因素评价体系,基于评价因子和预期修正,分别得出单户住宅档次与水平、小区建设档次与水平、区位与生活便利性、周边景观与环境等4个影响因素强度的得分,并分析其空间分异格局。以2012年扬州市1305个小区的平均住宅单价为因变量,4个基本影响因素得分为自变量,进行回归分析,探索所有住宅及各子市场价格分异的主要因素,并分析其驱动机制。结果表明:①4个影响因素强度格局明显不同,住宅自身因素的格局呈现中心低外围高的圈层式分异,而外部作用因素强度呈现中心高外围低、西高东低的扇型与圈层相结合式空间分异格局;②扬州市总体住宅价格空间分异的核心影响因素是小区建设档次与水平,不同类型住宅子市场的价格影响因素各不相同;③扬州市住宅价格空间分异的主要驱动力是特定住宅类型与档次建设的区位指向、特定收入阶层的空间集聚、公共物品投资的空间差异、城市居住用地扩展与城市更新的区位指向。 |
其他语种文摘
|
Urban housing price differentiation is an important issue in urban geography. Given the current high prices of housing in China, spatial variation of inner city housing prices becomes an important part of the Chinese urban geographic studies. Housing prices in China have become the focus of concern for both the government and urban residents, had significant implications for social justice and stability, improvement of living standards, enhancement of residential satisfaction and social harmony, as well as become the key issue in sustainable urbanization and the healthy development of real estate markets. Therefore, housing prices has become the core issue that is paid close attention by all levels of governments and inhabitants. The focus of this research is to examine determinants and dynamics of spatial differentiation of housing price in Yangzhou. In this paper, all types of residential areas located in Yangzhou are investigated, with the living quarters(or residential groups) taken as the basic research unit, with data in 2012. As the study included ordinary commercial housing, attached and detached houses, high-end commercial and residential apartments, housing-reform quarters, affordable houses and single-storey cottages, that is, all housing types that can be sold on the market, the result of this investigation is much more reliable compared to other studies that analyzed only ordinary commercial housing. Our appraisal system of urban housing price differentiation composed of 20 evaluation factors, four determinants and four expectation factors. The four determinants contain building(architectural) characteristics, residential quarter characteristics, location and convenience features, and landscape and environmental characteristics. The four expectation factors are displacement and resettlement, residential quarter renewal, urban spatial development strategy, and landscape and environmental renovations. Based on the evaluation and expectation factors, we calculated the scores of the four determinants in all residential groups, and analyzed their spatial differentiation patterns. Linear regression was performed between the dependent variable-housing prices of the 1305 residential quarters in Yangzhou in 2012, and the independent variables: the four determinants of price. The main influence factors of the city-wide housing market and sub-markets were evaluated by regression against housing prices. The results show that: (1) spatial patterns of the four determinants' scores are clearly different. Building characteristics and residential quarter characteristics scores show a low(center district) to high(outskirts) differentiation with concentric circles. Scores of location and convenience and landscape and environment characteristics are high in the west and center districts, and low in the east district and outskirts. (2) The key determinant of housing price is residential quarter characteristics in Yangzhou. There exist different key determinants for respective housing sub-markets. (3) The main dynamics of spatial differentiation of housing prices are as follows: locational direction on dwelling construction of particular housing types, spatial agglomeration of particular income groups, spatial inequality of investment in public commodity and locational direction on urban residential expansion and urban redevelopment. These dynamics acted on the four determinants and generated the observed spatial differentiation of housing prices in Yangzhou. |
来源
|
地理科学进展
,2014,33(3):375-388 【核心库】
|
关键词
|
住宅价格
;
空间分异
;
影响因素
;
驱动力
;
住宅子市场
;
扬州
|
地址
|
1.
广州地理研究所, 广州, 510070
2.
衡阳师范学院资源环境与旅游管理系, 湖南, 衡阳, 421002
3.
中国科学院地理科学与资源研究所, 北京, 100101
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-6301 |
学科
|
社会科学总论 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:5106155
|
参考文献 共
41
共3页
|
1.
党云晓. 北京城市居民住房消费行为的空间差异及其影响因素.
地理科学进展,2011,30(10):1203-1209
|
CSCD被引
11
次
|
|
|
|
2.
邓羽. 基于协同克里格的基准地价评估及空间结构分析.
地理科学进展,2009,28(3):403-408
|
CSCD被引
13
次
|
|
|
|
3.
冯长春. 轨道交通对其沿线商品住宅价格的影响分析——以北京地铁5号线为例.
地理学报,2011,66(8):1055-1062
|
CSCD被引
41
次
|
|
|
|
4.
葛红玲.
商品住宅价格形成问题研究: 以北京为典型案例分析,2010
|
CSCD被引
1
次
|
|
|
|
5.
郝前进. 到CBD距离、交通可达性与上海住宅价格的地理空间差异.
世界经济文汇,2007(1):22-35
|
CSCD被引
6
次
|
|
|
|
6.
李妮.
西安普通商品住宅价格空间格局及其演变分析,2009
|
CSCD被引
3
次
|
|
|
|
7.
李郇. 城市政府基础设施投资在住宅市场的资本化考察----基于广州价格数据的Hedonic模型构建.
地理研究,2010,29(7):1269-1280
|
CSCD被引
10
次
|
|
|
|
8.
梁绍连.
上海住宅价格空间分异与居住空间结构演变,2008
|
CSCD被引
3
次
|
|
|
|
9.
刘旺.
北京市居住空间结构与居民住宅区位选择行为研究,2004
|
CSCD被引
1
次
|
|
|
|
10.
刘颖. 长春市区新建住宅价格的空间格局分析.
地理科学,2011,31(1):95-101
|
CSCD被引
15
次
|
|
|
|
11.
秦波. 北京住宅价格分布与城市空间结构演变.
经济地理,2010,30(11):1815-1820
|
CSCD被引
12
次
|
|
|
|
12.
阮连法. 重大事件对城市住宅价格的影响: 来自杭州市的证据.
中国土地科学,2012,26(12):41-47
|
CSCD被引
5
次
|
|
|
|
13.
石忆邵. 上海南站对住宅价格影响的时空效应分析.
地理学报,2009,64(2):167-176
|
CSCD被引
14
次
|
|
|
|
14.
宋雪娟. 西安市住宅价格空间结构和分异规律分析.
测绘科学,2011,36(2):171-174
|
CSCD被引
10
次
|
|
|
|
15.
汤庆园. 基于地理加权回归的上海市房价空间分异及其影响因子研究.
经济地理,2012,32(2):52-58
|
CSCD被引
55
次
|
|
|
|
16.
王洋. 扬州市住宅价格的空间分异与模式演变.
地理学报,2013,68(8):1082-1096
|
CSCD被引
41
次
|
|
|
|
17.
王洋. 中国城市住宅价格的空间分异格局及影响因素.
地理科学,2013,33(10):1157-1165
|
CSCD被引
37
次
|
|
|
|
18.
温海珍. 城市景观对住宅价格的影响—以杭州市为例.
地理研究,2012,31(10):1806-1814
|
CSCD被引
26
次
|
|
|
|
19.
阎小培. 广州市及周边地区商品房的开发与分布.
地理学报,2001,56(5):569-580
|
CSCD被引
2
次
|
|
|
|
20.
张红. 北京商品住宅价格变动实证分析.
中国房地产金融,2001(3):3-7
|
CSCD被引
1
次
|
|
|
|
|