高硒碳质泥岩中的3株高还原耐受亚硒酸盐菌
Three high-reducing selenite-tolerance bacteria from high-Se carbonaceous mudstone
查看参考文献47篇
文摘
|
文中研究了高硒碳质泥岩中的3株细菌 Bacillus licheniformis SeRB-1、 Bacillus sp. SeRB-2和 Arthrobacter sp. SeRB-3耐受亚硒酸盐的能力。研究表明,低浓度的Se(IV)(<25 mM)对细菌生长有促进作用,高浓度的Se(IV)(>100 mM)起抑制作用。随着Se(IV)浓度的增加,细菌生长的倍增时间延长、增长速率变小、抑制率增大。但细菌耐受Se(IV)的能力可通过不断驯化来有限度的提高。实验得出了其还原耐受亚硒酸盐的浓度高达800 mM,抑制细菌生长的半数有效浓度EC_(50)也达到了102.48~150.24 mM,可以认为细菌SeRB-1、SeRB-2、SeRB-3为高耐受亚硒酸盐菌。通过透射电镜对细菌的形貌观测发现,在Se(IV)胁迫下,在靠近细菌壁、膜附近位置生成大量的元素硒,这些元素硒的生成可能是细菌为减少Se(IV)毒害而产生的解毒机制;实验中还发现疑似甲基化气体生成,视为其解毒或脱毒的另一机制。因此,本研究成果对于高硒污染区域的微生物修复具有重要的指导意义。 |
其他语种文摘
|
This study examined the tolerance of selenite for 3 strains of Bacillus licheniformis SeRB-1, Bacillus sp. SeRB-2 and Arthrobacter sp. SeRB-3 from high-Se carbonaceous mudstone. The results demonstrate that cell growth can be stimulated by Se(IV) in lower concentration(less than 25 mM), but inhibited in higher concentration (over 100 mM). With the increasing of Se(IV) concentration, the doubling time got longer, rate turned smaller, and percentages of growth inhibition became larger. But, the tolerance of Se(IV) for strains was typically enhanced, through continued domestication and cultivation under an increasing Se(IV) culture. Experiments also show that the concentration of Se(IV)-resistant was as high as 800 mM, while the medium effective concentration of bacterial growth inhibition was also high up to 102.48-150.24 mM. Therefore, the strains could be considered as high Se(IV)-resistant bacteria. The TEM studies of bacteria morphology show that large numbers of elemental Se were detected at the cell envelops (near cell wall and membrane) under the Se(IV) stress. Such changes in Se might be one of the detoxification mechanisms of the bacteria. On the other hand, suspected methylation gas was observed during the experiment, which might be recognized as another mechanism for the removal of Se(IV) toxin or detoxification. This research is of great significance for microbial remediation of high-Se polluted areas. |
来源
|
地学前缘
,2014,21(2):331-341 【核心库】
|
DOI
|
10.13745/j.esf.2014.02.025
|
关键词
|
高硒碳质泥岩
;
亚硒酸盐还原
;
细菌
;
四价硒耐受性
;
高耐受性机理
|
地址
|
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵州, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-2321 |
学科
|
天文学;环境科学基础理论 |
基金
|
国家自然科学基金创新研究群体项目
;
中国科学院知识创新工程重要方向项目
;
国家自然科学基金
|
文献收藏号
|
CSCD:5099527
|
参考文献 共
47
共3页
|
1.
WHO.
Environmental Health Criteria 58: Selenium. International Program on Chemical Safety,1987:190
|
CSCD被引
1
次
|
|
|
|
2.
Levander O A. A global view of human selenium nutrition.
Annual Review of Nutrition,1987,7:227-250
|
CSCD被引
12
次
|
|
|
|
3.
Tan J A. Selenium in soil and endemic diseases in China.
Science of the Total Environment,2002,284(1/2/3):227-235
|
CSCD被引
95
次
|
|
|
|
4.
Haygarth P M. Global importance and global cycling of selenium.
Selenium in the Environment,1994:1-28
|
CSCD被引
3
次
|
|
|
|
5.
Fordyce F. Selenium deficiency and toxicity in the environment.
Essentials of Medical Geology,2005:373-415
|
CSCD被引
4
次
|
|
|
|
6.
Fordyce F M. Soil, grain and water chemistry in relation to human selenium-responsive diseases in Enshi District, China.
Applied Geochemistry,2000,15(1):117-132
|
CSCD被引
47
次
|
|
|
|
7.
Zheng B. The Se-rich carbonaceous siliceous rock and endemic Se poisoning in southwest Hubei China.
Chinese Science Bulletin,1992,37:1027-1029
|
CSCD被引
2
次
|
|
|
|
8.
Yang G Q. Endemic selenium intoxication of humans in China.
American Journal of Clinical Nutrition,1983,37(5):872-881
|
CSCD被引
25
次
|
|
|
|
9.
Zhu J M. Distribution and transport of selenium in Yutangba, China: Impact of human activities.
Science of the Total Environment,2008,392(2/3):252-261
|
CSCD被引
24
次
|
|
|
|
10.
朱建明. 湖北渔塘坝高硒环境中硒的分布、迁移和生物可利用性.
土壤学报,2005,42(5):835-843
|
CSCD被引
8
次
|
|
|
|
11.
Stolz J. Microbial transformation of elements: The case of arsenic and selenium.
International Microbiology,2002,5(4):201-207
|
CSCD被引
5
次
|
|
|
|
12.
Stolz J E. Arsenic and selenium in microbial metabolism.
Annual Review of Microbiology,2006,60:107-130
|
CSCD被引
22
次
|
|
|
|
13.
Dungan R. Microbial transformations of selenium and the bioremediation of seleniferous environments.
Bioremediation Journal,1999,3(3):171-188
|
CSCD被引
10
次
|
|
|
|
14.
Losi M E. Reduction of selenium oxyanions by Enterobacter cloacae SLD1a-1: Isolation and growth of the bacterium and its expulsion of selenium particles.
Applied and Environmental Microbiology,1997,63(8):3079-3084
|
CSCD被引
8
次
|
|
|
|
15.
Oremland R S. Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: Biogeochemical significance of a novel, sulfate-independent respiration.
Applied and Environmental Microbiology,1989,55(9):2333-2343
|
CSCD被引
6
次
|
|
|
|
16.
Di Gregorio S. Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: A biotechnological perspective.
Environment International,2005,31(2):233-241
|
CSCD被引
6
次
|
|
|
|
17.
Burton G A. High-incidence of selenite-resistant bacteria from a site polluted with selenium.
Applied and Environmental Microbiology,1987,53(1):185-188
|
CSCD被引
1
次
|
|
|
|
18.
Ghosh A. Isolation and characterization of selenite-and selenate-tolerant microorganisms from selenium-contaminated sites.
World Journal of Microbiology & Biotechnology,2008,24(8):1607-1611
|
CSCD被引
7
次
|
|
|
|
19.
Kinkle B K. Tellurium and selenium resistance in rhizobia and its potential use for direct isolation of Rhizobium-Meliloti from soil.
Applied and Environmental Microbiology,1994,60(5):1674-1677
|
CSCD被引
3
次
|
|
|
|
20.
Mishra R R. Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product.
Chemosphere,2011,84(9):1231-1237
|
CSCD被引
5
次
|
|
|
|
|