Neighbor Sum Distinguishing Total Colorings of Graphs with Bounded Maximum Average Degree
查看参考文献19篇
文摘
|
A proper [h]-total coloring c of a graph G is a proper total coloring c of G using colors of the set [h]={1,2,...,h}.Let w(u) denote the sum of the color on a vertex u and colors on all the edges incident to u.For each edge uv∈E(G),if w(u)≠w(v),then we say the coloring c distinguishes adjacent vertices by sum and call it a neighbor sum distinguishing [h]-total coloring of G.By tndi_∑(G),we denote the smallest value h in such a coloring of G.In this paper,we obtain that G is a graph with at least two vertices,if mad(G)<3,then tndi_∑(G)≤k+2 where k=max{Δ(G),5}.It partially conffirms the conjecture proposed by Pilsniak and Wozniak. |
来源
|
Acta Mathematica Sinica. English Series
,2014,30(4):703-709 【核心库】
|
DOI
|
10.1007/s10114-014-2454-7
|
关键词
|
Total coloring
;
neighbor sum distinguishing total colorings
;
average degree
|
地址
|
1.
School of Science, Shandong Jiao Tong University, Ji’nan, 250023
2.
School of Mathematics, Shandong University, Ji’nan, 250100
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1439-8516 |
学科
|
数学 |
基金
|
国家自然科学基金
;
the Research Fund for the Doctoral Program of Shandong Jiaotong University
;
国家自然科学基金
;
国家教育部高等学校博士学科点专项科研基金
;
the Scientific Research Foundation for the Excellent Middle-Aged and Youth Scientists of Shandong Province of China
|
文献收藏号
|
CSCD:5090313
|
参考文献 共
19
共1页
|
1.
Anholcer M. A new upper bound for the total vertex irregularity strength of graphs.
Discrete Math,2009,309:6316-6317
|
CSCD被引
1
次
|
|
|
|
2.
Baca M. On irregular total labellings.
Discrete Math,2007,307:1378-1388
|
CSCD被引
3
次
|
|
|
|
3.
Bondy J A.
Graph Theory with Applications,1976
|
CSCD被引
1018
次
|
|
|
|
4.
Chen X. On the adjacent vertex distinguishing total coloring numbers of graphs with Δ = 3.
Discrete Math,2008,308:4003-4008
|
CSCD被引
6
次
|
|
|
|
5.
Dong A J. Neighbor sum distinguishing colorings of some graphs.
Discrete Mathematics, Algorithms and Applications,2012,4(4):1250047
|
CSCD被引
6
次
|
|
|
|
6.
Flandrin E. Neighbor sum distinguishing index.
Graphs Combin,2013,29:1329-1336
|
CSCD被引
20
次
|
|
|
|
7.
Huang D J. Adjacent vertex distinguishing total coloring of planar graphs with large maximum degree (in Chinese).
Sci. Sin. Math,2012,42(2):151-164
|
CSCD被引
1
次
|
|
|
|
8.
Li H L. Neighor sum distinguishing total colorings of planar graphs.
J. Combin. Optim
|
CSCD被引
1
次
|
|
|
|
9.
Li H L. Neighbor sum distinguishing total colorings of K 4-minor free graphs.
Front. Math. China,2013,8(6):1351-1366
|
CSCD被引
14
次
|
|
|
|
10.
Nurdin Baskoro E T. On the total vertex irregularity strength of trees.
Discrete Math,2010,310:3043-3048
|
CSCD被引
1
次
|
|
|
|
11.
Pilsniak M.
On the adjacent vertex distinguishing index by sums in total proper colorings. Preprint MD 051
|
CSCD被引
1
次
|
|
|
|
12.
Przybylo J. Linear bound on the irregularity strength and the total vertex irregularity strength of graphs.
SIAM J. Discrete Math,2009,23(1):511-516
|
CSCD被引
3
次
|
|
|
|
13.
Wang H Y. On the adjacent vertex-distinguishing total chromatic numbers of the graphs with Δ(G) = 3.
J. Comb. Optim,2007,14:87-109
|
CSCD被引
6
次
|
|
|
|
14.
Wang H Y. The adjacent vertex-distinguishing total chromatic number of 1-tree.
Ars Combin,2009,91:183-192
|
CSCD被引
1
次
|
|
|
|
15.
Wang W F. Adjacent vertex distinguishing total coloring of K4-minor free graphs (in Chinese).
中国科学. A辑, 数学,2009,39(12):1462-1472
|
CSCD被引
1
次
|
|
|
|
16.
Wang W F. Adjacent vertex distinguishing total coloring of graphs with lower average degree.
Tanwanese J. Math,2008,12(4):979-990
|
CSCD被引
5
次
|
|
|
|
17.
Wang Y Q. Adjacent vertex distinguishing total colorings of outerplanar graphs.
J. Comb. Optim,2010,19:123-133
|
CSCD被引
7
次
|
|
|
|
18.
Wijaya K. Total vertex irregular labeling of complete bipartite graphs.
J. Combin. Math. Combin. Comput,2005,55:129-136
|
CSCD被引
1
次
|
|
|
|
19.
Zhang Z F. On adjacent vertex distinguishing total coloring of graphs.
Sci. China, Ser. A,2005,48(3):289-299
|
CSCD被引
81
次
|
|
|
|
|