基于定性和定量辅助变量的土壤有机质空间分布预测——以四川三台县为例
Prediction of distribution of soil organic matter based on qualitative and quantitative auxiliary variables: a case study in Santai County in Sichuan Province
查看参考文献32篇
文摘
|
准确获取土壤性质的空间分布信息,是区域土壤资源优化利用和土壤环境保护的需要。以川中丘陵区三台县为案例区,运用人工神经网络模型,构建融合区域定性及定量辅助变量的空间预测方法,模拟三台县土壤有机质的空间分布格局。结果表明,研究区土壤有机质在4.20~47.60 g kg~(-1)之间,平均为17.97 g kg~(-1);变异系数为36.89%,属中等程度变异。土壤有机质的块金值与基台值之比为0.742,变程为7.0 km,即空间自相关性较弱。不同土壤类型间有机质含量差异显著;土属的空间分布较土类能更好地揭示研究区土壤有机质含量空间分布格局的差异。除土壤类型因素的影响外,坡度、地形湿度及植被盖度是研究区土壤有机质空间变异的主要因子。融合土壤类型因素和地形植被因子的神经网络模型预测结果,比普通克里格法、回归克里格法以及神经网络结合普通克里格的方法,更符合研究区地学规律和实际情况;其预测结果的平均绝对误差、平均相对误差和均方根误差较其他3种方法均降低幅度显著。同时,该方法对极值有较好的预测能力。研究为复杂环境条件下准确获取区域土壤性质的空间分布信息提供了较可行的方法。 |
其他语种文摘
|
Soil organic matter (SOM) is one of the most important indicators of soil quality. Accurate spatial information about SOM is critical for sustainable soil utilization and management and environmental protection. Spatially correlated auxiliary information was widely used to improve spatial prediction accuracy. However, the qualitative variables such as soil type, land use type are not being used often as auxiliary variables. In this paper we proposed a spatial prediction method (ST+RBFNN) based on radial basis functional neural network model, using both qualitative and quantitative variables as auxiliary information, to predict the spatial distribution of soil organic matter in Santai County in Sichuan Province, located in the hilly region of mid Sichuan Basin. To establish and validate this method, 2346 soil samples were collected and randomly divided into two groups, as modeling points (1877) and validation points (469). With the modeling points, a radial basis function neural network model was trained using the average content of SOM of each soil genus, topographical factors and vegetation index as auxiliary information to predict the spatial distribution of SOM content within each soil genus. Results showed that, the SOM content ranged from 4.20 to 47.60 g kg~(-1), with an average value of 17.97 g kg~(-1), a moderate variability. The nugget/sill ratio was 0.742, indicating a weak spatial dependence for SOM. Elevation and slope showed significantly negative correlation with SOM content while topographic wetness index and vegetation index showed significantly positive correlation with SOM. Analysis of variance indicated that there were significant differences in average content of SOM among the different soil types (P<0.01), suggesting that soil types also had significant impact on the spatial distribution of SOM, and soil genus types were better predictors than soil groups. Slope, topographic wetness index and vegetation index showed significant correction with the residuals of average content of SOM (computed by subtracting the average SOM content of the relative soil genus from the original value of each soil sample), indicating that the above three quantitative factors further resulted in the spatial variation of SOM besides soil types. The prediction map obtained by the proposed method was more consistent with the true geographical information than ordinary Kriging (OK), regression Kriging (RK) and neural network combined with ordinary Kriging (RBFNN+OK). Moreover, ST+RBFNN method significantly reduced the prediction errors. Compared to OK, RK and RBFNN+OK, the mean absolute error (MAE) of ST+ RBFNN method was reduced by 31.76%, 28.45% and 26.68%, the mean relative error (MRE) was reduced by 35.90%, 32.55% and 30.75%, and the root mean squared error (RMSE) was reduced by 22.60%, 19.88% and 18.43%. Moreover, this method also showed better capability of predicting the extremum of the validation data. The prediction errors were reduced by 6.88% to 43.70% than the other three methods in predicting the extremum of the validation points (10% of normal distribution of the data). This result suggested that it is helpful for improving the prediction accuracy to employ both qualitative and quantitative variables as auxiliary information in spatial prediction of soil properties, and this proposed method provides a useful research idea for digital soil mapping. |
来源
|
地理科学进展
,2014,33(2):259-269 【核心库】
|
关键词
|
土壤有机质
;
空间分布预测
;
神经网络模型
;
辅助变量
;
丘陵区
;
四川省三台县
|
地址
|
1.
四川农业大学资源环境学院, 成都, 611130
2.
中国科学院地理科学与资源研究所, 北京, 100101
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-6301 |
学科
|
农业基础科学;自动化技术、计算机技术 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:5062857
|
参考文献 共
32
共2页
|
1.
鲍士旦.
土壤农化分析,2005
|
CSCD被引
496
次
|
|
|
|
2.
陈锋锐. 基于多元地统计的土壤有机质含量空间格局反演.
农业工程学报,2012,28(20):188-194
|
CSCD被引
14
次
|
|
|
|
3.
范胜龙. 表征土壤有机碳区域分布的优化空间插值模型研究——以福建省龙海市为例.
水土保持研究,2011,18(6):1-5
|
CSCD被引
7
次
|
|
|
|
4.
顾成军. 省域土壤有机碳空间分布的主控因子-土壤类型与土地利用比较.
土壤学报,2013,50(3):425-432
|
CSCD被引
29
次
|
|
|
|
5.
郭龙. 基于协同克里格插值和地理加权回归模型的土壤属性空间预测比较.
土壤学报,2012,49(5):1037-1042
|
CSCD被引
39
次
|
|
|
|
6.
胡玉福. 川中丘陵区不同利用方式的土壤养分特征研究.
水土保持学报,2006,20(6):75-78
|
CSCD被引
15
次
|
|
|
|
7.
李亨伟. 川中丘陵区紫色土微地形下有机质空间变异特征.
土壤通报,2009,40(3):552-554
|
CSCD被引
5
次
|
|
|
|
8.
李启权. 丘陵区土壤有机质空间分布预测的神经网络方法.
农业环境科学学报,2012,31(12):2451-2458
|
CSCD被引
8
次
|
|
|
|
9.
李启权. 基于神经网络模型和地统计学方法的土壤养分空间分布预测.
应用生态学报,2013,24(2):459-466
|
CSCD被引
41
次
|
|
|
|
10.
连纲. 黄土丘陵沟壑区县域土壤有机质空间分布特征及预测.
地理科学进展,2006,25(2):112-122
|
CSCD被引
38
次
|
|
|
|
11.
邱乐丰. 基于环境辅助变量的拔山茶园土壤肥力空间预测.
应用生态学报,2010,21(12):3099-3104
|
CSCD被引
9
次
|
|
|
|
12.
王情. 基于SPOT-VGT数据的流域植被覆盖动态变化及空间格局特征--以淮河流域为例.
地理科学进展,2013,32(2):270-277
|
CSCD被引
26
次
|
|
|
|
13.
杨琳. 基于典型点的目的性采样设计方法及其在土壤制图中的应用.
地理科学进展,2010,29(3):279-286
|
CSCD被引
30
次
|
|
|
|
14.
于海达. 草原植被长势遥感监测研究进展.
地理科学进展,2012,31(7):885-894
|
CSCD被引
13
次
|
|
|
|
15.
张淑杰. 整合已有土壤样点的数字土壤制图补样方案.
地理科学进展,2012,31(10):1318-1325
|
CSCD被引
8
次
|
|
|
|
16.
赵永存. 不同方法预测河北省土壤有机碳密度空间分布特征的研究.
土壤学报,2005,42(3):379-385
|
CSCD被引
49
次
|
|
|
|
17.
Erzin Y. Artificial neural network models for predicting soil thermal resistivity.
International Journal of Thermal Sciences,2008,47(10):1347-1358
|
CSCD被引
7
次
|
|
|
|
18.
Li Q Q. Spatially distributed modeling of soil organic matter across China: an application of artificial neural network approach.
Catena,2013,104(1):210-218
|
CSCD被引
34
次
|
|
|
|
19.
McBratney A B. On digital soil mapping.
Geoderma,2003,17(1/2):3-52
|
CSCD被引
185
次
|
|
|
|
20.
McSweeney K. Towards a new framework for modeling the soil-landscape continuum.
Factors of soil formation: a fiftieth anniversary retrospective,1994:127-145
|
CSCD被引
5
次
|
|
|
|
|