帮助 关于我们

返回检索结果

基于矢量的城市扩张多智能体模拟——以广州市番禺区为例
Vector-based multi-agent simulation of urban expansion: a case study in Panyu District in Guangzhou City

查看参考文献30篇

周淑丽 1   陶海燕 2 *   卓莉 2  
文摘 运用自下而上的多智能体建模方法构建城市扩张模型,研究城市扩张的基本特征和规律,对新型城镇化建设具有重要的理论和现实意义。但传统的多智能体模拟大多是基于栅格数据构建,不同的格网大小、邻域形状及邻域大小将产生不同的模拟结果。为克服传统栅格数据受模拟尺度的影响,采用城市土地利用现状图,构建矢量多智能体城市扩张动态模型。智能体依据“宜居性”评价指标,并遵从个人偏好,选择合适区位,模拟城市扩张的时空动态过程。将模型应用于广州市番禺区,模拟了其2003-2008年城市扩张情况。最后将模拟结果与实际土地利用现状图进行对比,结果表明,地块的转化精度为63.09%,非转化精度为90.74%,总精度为85.83%,具有较好的模拟精度,可以为新型城镇化建设提供有效的决策支持。
其他语种文摘 Urbanization has great potential to stimulate China's domestic demand and is an important driving force of building a well-off society in an all-round way. However the limited land resource in the process of urbanization has caught great attention of the government. So, research on the mechanisms of urban land expansion can offer effective guidance for urbanization. Multi-agent modeling provides a new method to study urban land expansion. And it is of theoretical and practical significance to adopt multi-agent modeling, a bottom-up approach, to explore the characteristics and mechanisms of urban land expansion. However, the existing multi-agent models are mainly based on raster, where grid size has a major impact on the simulation results, and grid size, neighborhood shape and neighborhood size also lead to different simulation results. As a result, it is a big challenge to choose an appropriate size for better simulation results. In order to overcome the limitation of the traditional raster-based multi-agent simulation, a vector-based multi-agent system of urban land expansion dynamic simulation was developed, in which household agents selected their own optimal places of living based on evaluation indices of urban residential suitability in the human-environment science. The evaluation indices mainly include the following four aspects: traffic accessibility, living convenience, land price and landscaping. The indices of traffic accessibility are obtained by calculating the distance from road and subway station based on exponential distance decay function. The indices of living convenience are obtained by calculating the distance from the public facilities such as school, hospital and so on, based on the same function. The indices of land price depend on the average price of the land in the neighborhood. The indices of landscaping are obtained based on the distance to rivers or the green in the same way. Finally, the four indices are summed up, by a weighted factor, to indicate the living suitability. The model runs as follows: household agents select their ideal residential package to live based on their preferences of living environment, the four evaluation indices as mentioned above. The land type of this package will be converted to urban land when the total number of household agents that select this package exceeds a certain threshold. At this point household agents can choose to stop selecting and settle down, or continue to select until they find their ideal residential package. This vector-based model was used to simulate urban land expansion process from 2003 to 2008, taking the district of Panyu of Guangzhou City as a study area and using the GIS-Extension module of NetLogo platform. Eventually, the simulation results were compared to the actual land use situations, showing that the conversion accuracy is 63.09%, the non-conversion accuracy is 90.74%, and the total accuracy is 86.04%. The simulation shows that vector-based multi-agent simulation of urban land expansion not only can eliminate the impact of the scale on the simulation results, but also has high simulation accuracy. At the same time, to some extent the vector-based multi-agent simulation is useful for understanding and discussing the mechanisms of urban expansion, and offers effective support for making the decisions on the construction of new urbanization.
来源 地理科学进展 ,2014,33(2):202-210 【核心库】
关键词 矢量数据 ; 多智能体模拟 ; 城市扩张 ; NetLogo ; 广州市番禺区
地址

1. 中山大学地理科学与规划学院综合地理信息研究中心, 广州, 510275  

2. 中山大学地理科学与规划学院综合地理信息研究中心, 广东省城市化与地理环境空间模拟重点实验室, 广州, 510275

语种 中文
文献类型 研究性论文
ISSN 1007-6301
学科 建筑科学
基金 广东省自然科学基金 ;  国家863计划 ;  中山大学千人计划科研启动经费项目 ;  中山大学领军人才专项工作经费项目
文献收藏号 CSCD:5062851

参考文献 共 30 共2页

1.  陈本清. 城市扩展及其驱动力遥感分析: 以厦门市为例. 经济地理,2005,25(1):79-83 CSCD被引 59    
2.  陈蔚. 多主体系统在城市发展模拟中的应用. 地理科学进展,2012,31(6):761-767 CSCD被引 6    
3.  国家统计局. 中国人口总量及结构变化情况,2011 CSCD被引 1    
4.  李克强. 认真学习、深刻领会、全面贯彻党的十八大精神, 促进经济持续健康发展和社会全面进步,2012 CSCD被引 1    
5.  黎夏. 约束性单元自动演化CA模型及可持续城市发展形态的模拟. 地理学报,1999,54(4):289-298 CSCD被引 89    
6.  刘小平. 基于多智能体系统的空间决策行为及土地利用格局演变的模拟. 中国科学: D辑,2006,36(11):1027-1036 CSCD被引 44    
7.  彭文甫. 利用RS和GIS进行成都市扩张及驱动力分析. 测绘科学,2011,36(5):79-81 CSCD被引 3    
8.  单玉红. 城市居住空间扩张的多主体模拟模型研究. 地理科学进展,2011,30(8):956-966 CSCD被引 7    
9.  谈明洪. 中国城市用地扩张的驱动力分析. 经济地理,2003,23(5):635-639 CSCD被引 107    
10.  陶海燕. 基于多智能体的地理空间分异现象模拟——以城市居住空间演变为例. 地理学报,2007,62(6):579-588 CSCD被引 21    
11.  陶海燕. 基于多智能体的居住空间格局演变的真实场景模拟. 地理学报,2009,64(6):665-676 CSCD被引 18    
12.  吴宏安. 西安城市扩张及其驱动力分析. 地理学报,2005,60(1):143-150 CSCD被引 100    
13.  吴文斌. 基于Agent的土地利用/土地覆盖变化模型的研究进展. 地理科学,2007,27(4):573-578 CSCD被引 32    
14.  徐建华. 现代地理学中的数学方法,2002 CSCD被引 383    
15.  薛领. 基于agent的建模——地理计算的新发展. 地球科学进展,2004,19(2):305-311 CSCD被引 22    
16.  杨青生. 多智能体与元胞自动机结合及城市用地扩张模拟. 地理科学,2007,27(4):542-548 CSCD被引 64    
17.  张金牡. 基于Agent模型的北京市土地利用变化动态模拟研究. 东华理工学院学报,2004,27(1):80-83 CSCD被引 9    
18.  Brown D G. Spatial agent-based modelling. International Journal of Geographical Information Science,2006,20(9):941-943 CSCD被引 3    
19.  Brown D G. Exurbia from the bottom-up: confronting empirical challenges to characterizing a complex system. Geoforum,2008,39(2):805-818 CSCD被引 5    
20.  Ellen W. Simulating informal settlement growth in Dar es Salaam, Tanzania: an agent-based housing model. Computers, Environment and Urban Systems,2011,35(2):93-103 CSCD被引 3    
引证文献 10

1 陈永林 长沙市城市扩张对边缘区景观格局的影响 地理与地理信息科学,2016,32(2):94-99
CSCD被引 5

2 李少英 土地利用变化模拟模型及应用研究进展 遥感学报,2017,21(3):329-340
CSCD被引 51

显示所有10篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号