倾角及冷却工况对多通路并联回路板式脉动热管传热性能的影响
Influences of inclination and cooling condition on heat transfer performance of closed loop plate pulsating heat pipe with parallel channels
查看参考文献18篇
文摘
|
针对多通路并联回路板式脉动热管建立实验台,采用铜质模块加热和水浴冷却方式作为热工条件,着重考察脉动热管在不同倾角(90°,75°,60°)及冷却工况(4.5 g·s~(-1)和9.0 g·s~(-1))下的传热性能,通过壁面温度的振荡和传热热阻来评价其传热效果。实验结果表明,重力对多通路并联回路板式脉动热管传热性能的影响较大,随着倾角的减少,工质的回流变弱,传热热阻变大,传热极限变低;脉动热管的加热功率与冷却能力是相互匹配的,匹配度越高,脉动热管越不易干烧,传热极限越高,在有倾角的工况下提高传热极限表现得更为明显;脉动热管运行时存在一个最佳水流量,在最佳冷却工况下,脉动热管的运行热阻最低。 |
其他语种文摘
|
An experimental setup was established based on a closed loop plate pulsating heat pipe with parallel channels and a series of experiments were conducted to study its operational performance with acetone and ethanol. Heating copper block and cold water bath were adopted as thermal conditions in the experiments. The characteristics were investigated for different inclinations (90°, 75°, and 60°) and cooling conditions (4.5 and 9.0 g·s~(-1)). The heat-transfer performance of the pulsating heat pipe was mainly evaluated by thermal resistance and wall temperature. The results show that gravity has great influence on the heat transfer. At smaller inclination, thermal resistance is larger and heat transfer limit is lower. Heating power and cooling capacity need to be matched each other, and heat transfer limit will be higher with higher matching degree, especially with inclination.An experimental setup was established based on a closed loop plate pulsating heat pipe with parallel channels and a series of experiments were conducted to study its operational performance with acetone and ethanol. Heating copper block and cold water bath were adopted as thermal conditions in the experiments. The characteristics were investigated for different inclinations (90°, 75°, and 60°) and cooling conditions (4.5 and 9.0 g·s~(-1)). The heat-transfer performance of the pulsating heat pipe was mainly evaluated by thermal resistance and wall temperature. The results show that gravity has great influence on the heat transfer. At smaller inclination, thermal resistance is larger and heat transfer limit is lower. Heating power and cooling capacity need to be matched each other, and heat transfer limit will be higher with higher matching degree, especially with inclination. There is a best mass flow rate during the operation, and the thermal resistance is the lowest under the best cooling condition. |
来源
|
化工学报
,2014,65(2):532-537 【核心库】
|
DOI
|
10.3969/j.issn.0438-1157.2014.02.023
|
关键词
|
多通路并联回路
;
板式脉动热管
;
倾角
;
冷却工况
;
传热性能
|
地址
|
1.
北京建筑大学环境与能源工程学院, 供热供燃气通风及空调工程北京市重点实验室, 北京, 100044
2.
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
3.
天津大学机械工程学院, 天津, 300072
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0438-1157 |
学科
|
能源与动力工程 |
基金
|
供热供燃气通风及空调工程北京市重点实验室研究基金项目
;
2013年热能动力工程专业建设项目
;
北京建筑大学科学研究基金项目
|
文献收藏号
|
CSCD:5055339
|
参考文献 共
18
共1页
|
1.
Maydanik Yury F. Compact cooler for electronics on the basis of a pulsating heat pipe.
Applied Thermal Engineering,2009,29:3511-3517
|
CSCD被引
21
次
|
|
|
|
2.
Supirattanakul P. Application of a closed-loop oscillating heat pipe with check valves (CLOHP/CV) on performance enhancement in air conditioning system.
Energy and Buildings,2011,43:1531-1535
|
CSCD被引
9
次
|
|
|
|
3.
Han X. Investigations on the heat transport capability of a cryogenic oscillating heat pipe and its application in achieving ultra-fast cooling rates for cell vitrification cryopreservation.
Cryobiology,2008,56:195-203
|
CSCD被引
9
次
|
|
|
|
4.
Natsume K. Heat transfer performance of cryogenic oscillating heat pipes for effective cooling of superconducting magnets.
Cryogenics,2011,51:309-314
|
CSCD被引
9
次
|
|
|
|
5.
Lips S. Experimental evidences of distinct heat transfer regimes in pulsating heat pipes (PHP).
Applied Thermal Engineering,2010,30:900-907
|
CSCD被引
6
次
|
|
|
|
6.
Charoensawan P. Thermal performance of horizontal closed-loop oscillating heat pipes.
Applied Thermal Engineering,2008,28:460-466
|
CSCD被引
12
次
|
|
|
|
7.
Kammuang-Lue N. Correlation to predict the maximum heat flux of a vertical closed-loop pulsating heat pipe.
Heat Transfer Engineering,2009,30(12):961-972
|
CSCD被引
5
次
|
|
|
|
8.
Shafii M B. Experimental investigation of pulsating heat pipes and a proposed correlation.
Heat Transfer Engineering,2010,31(10):854-861
|
CSCD被引
7
次
|
|
|
|
9.
Wannapakhe S. Heat transfer rate of a closed-loop oscillating heat pipe with check valves using silver nanofluid as working fluid.
Journal of Mechanical Science and Technology,2009,23:1576-1582
|
CSCD被引
4
次
|
|
|
|
10.
商福民. Experiments on enhanced heat transfer of self-exciting mode oscillating-flow heat pipe with non-uniform structure.
International Journal of Food Engineering,2010,6(2):1-10
|
CSCD被引
6
次
|
|
|
|
11.
Thompson S M. Investigation of a flat-plate oscillating heat pipe with Tesla-type check valves.
Experimental Thermal and Fluid Science,2011,35:1265-1273
|
CSCD被引
18
次
|
|
|
|
12.
Thompson S M. An experimental investigation of a three-dimensional flat-plate oscillating heat pipe with staggered microchannels.
International Journal of Heat and Mass Transfer,2011,54:3951-3959
|
CSCD被引
11
次
|
|
|
|
13.
王宇. 多通道并联回路型脉动热管运行特性的试验研究.
动力工程学报,2011,31(4):273-278
|
CSCD被引
7
次
|
|
|
|
14.
张显明. 倾斜角度及加热方式对脉冲热管传热性能的影响.
中国电机工程学报,2004,24(11):222-227
|
CSCD被引
16
次
|
|
|
|
15.
Bhuwakietkumjohn N. Internal flow patterns on heat transfer characteristics of a closed-loop oscillating heat-pipe with check valves using ethanol and a silver nano-ethanol mixture.
Experimental Thermal and Fluid Science,2010,34:1000-1007
|
CSCD被引
7
次
|
|
|
|
16.
Hemadri V A. Thermal radiators with embedded pulsating heat pipes: infra-red thermography and simulations.
Applied Thermal Engineering,2011,31:1332-1346
|
CSCD被引
10
次
|
|
|
|
17.
冼海珍. Experimental study on the heat transfer enhancement of oscillating-flow heat pipe by acoustic cavitation.
干燥技术与设备,2009,27:542-547
|
CSCD被引
1
次
|
|
|
|
18.
刘建红. 脉动热管间协同耦合强化传热特性实验分析.
化工学报,2011,62(6):1549-1553
|
CSCD被引
6
次
|
|
|
|
|