热液矿床中萤石的稀土元素地球化学及其地质意义
Rare earth elements geochemistry of fluorite in hydrothermal deposits and its geological significance
查看参考文献45篇
文摘
|
萤石是许多热液矿床中重要的脉石矿物,其稀土元素含量及相关参数(如∑REE、LREE/HREE、Eu/Eu~*、Ce/Ce~*、Y/La、Tb/Ca-Tb/La图解等),能为揭示成矿流体性质、来源与演化,建立成矿模式,评价区域成矿潜力等提供重要信息。然而,随着微区分析技术的日趋成熟,原位实测数据显示,萤石中微量元素(包括稀土元素)的分配在显微尺度上可能具有不均一性,致使依据萤石溶液法获得的稀土元素含量所反映地质信息的可靠性受到质疑。因此,在应用萤石稀土元素地球化学探讨相关地质问题前,有必要加强萤石微观结构的观察和配套的流体包裹体以及相关同位素组成分析。本文在综述萤石稀土元素地球化学研究基础上,初步探讨了影响萤石稀土元素不均一分配的主要机制,以期为萤石稀土元素在热液矿床成因研究中的应用提供借鉴。 |
其他语种文摘
|
Rare earth elements are important tracers in probing the source of ore-forming fluid and discussing the process of hydrothermal mineralization. As a calcic mineral, fluorite is one of the most important gangue or ore minerals present under various temperature conditions in many hydrothermal deposits. REE~(3+) tends to enter the crystal lattice of fluorite, attributed to the similarity of ion radius and crystallochemistry between Ca~(2+) and REE~(3+). In addition, fluorite is a significant medium in the study of hydrothermal deposits. The rare earth elements in the fluorite are susceptible to the source of fluid, the condition of leaching rocks during migration and evolution, the chemical composition, redox conditions and the form of transportation in the fluid. Besides,the rare earth elements content and relative geochemical parameters of fluorite, such as ∑REE, LREE/HREE ratio, Eu, Ce, Y anomaly, Ta/Ca-Ta/La diagram, Y/La ratio and mode of occurrence of REE~(2+) (except Eu~(2+)), and other rare earth element geochemical characteristics could provide important geological information concerning the source, physico-chemical property and the evolutionary process of the hydrothermal fluid, andthey could also provide message crucial for developing metallogenic model and making inferences about the metallogenic potential of the regions in which they occur. However, with the development of the microanalysis technology, the in-situ trace element analysis of fluorite implies that it is probable that the distribution of trace elements (including rare earth elements) of fluorite isinhomogeneous at the micro level, which might result in the questioning of applying rare earth elements, obtained by the solution method, of fluorite in the hydrothermal deposit to probing the geological information. Therefore, it is necessary to pay more attention to the comprehensive study of fluorite in microstructure, fluid inclusion and isotopic analysis before applying the rare earth element geochemistry to probing relevant geological issues. Thus, in this paper, the authors summarized recent status and progress in rare earth elements geochemistryof fluorite, and discussed the dominant mechanisms leading to inhomogeneity in rare earth elements distribution in fluorite tentatively, looking forward to providing more valuable reference for rational understanding of rare earth element geochemistry of fluorite in the hydrothermal deposit. |
来源
|
岩石矿物学杂志
,2014,33(1):185-193 【核心库】
|
关键词
|
稀土元素
;
不均一分配
;
萤石
;
热液矿床
|
地址
|
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1000-6524 |
学科
|
地质学 |
基金
|
中国科学院矿床地球化学国家重点实验室"十二五"项目群
;
国家自然科学基金项目
;
山东黄金集团科研项目
|
文献收藏号
|
CSCD:5046844
|
参考文献 共
45
共3页
|
1.
Badanina E V. The Behavior of Rare-Earth and lithophile trace elements in Rare-Metal Granites: A study of flourite, melt inclusions and host rocks from the Khangilay Complex, Transbaikalia, Russia.
The Canadian Mineralogist,2006,44:667-692
|
CSCD被引
9
次
|
|
|
|
2.
Barbieri M. Yttrium, Lanthanum and Manganese Geochemistry in Fluorite Deposits from Sardinia (Italy).
Chemical Geology,1983,40:43-50
|
CSCD被引
7
次
|
|
|
|
3.
Bau M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium.
Chemical Geology,1991,93:219-230
|
CSCD被引
253
次
|
|
|
|
4.
Bau M. Rare-Earth Element Fractionation in Metamorphogenic Hydrothermal Calcite, Magnesite and Siderite.
Miner. Petrol,1992,4:231-246
|
CSCD被引
101
次
|
|
|
|
5.
Bau M. Comparative-Study of Yttrium and Rare-Earth Element Behaviors in Fluorine-Rich Hydrothermal Fluids.
Contrib. Mineral. Petr,1995,119:213-223
|
CSCD被引
208
次
|
|
|
|
6.
Bau M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect.
Contrib. Mineral. Petrol,1996,123:323-333
|
CSCD被引
261
次
|
|
|
|
7.
Bau M. Tracing element sources of hydrothermal mineral deposits: REE and Y distribution and Sr-Nd-Pb isotopes in fluorite from MVT deposits in the Pennine Orefield, England.
Mineralium Deposita,2003,38:992-1008
|
CSCD被引
21
次
|
|
|
|
8.
Bil H J. Origin of Coloration in Some Fluorites.
American Mineralogist,1967,52(7/8):1003-1008
|
CSCD被引
1
次
|
|
|
|
9.
Bilal B A. Complex formation of trace elements in geochemical systems-II. Stability of rare earths fluoro complexes in fluorite bearing model system at various ionic strengths.
Journal of Inorganic and Nuclear Chemistry,1979,41:1607-1608
|
CSCD被引
2
次
|
|
|
|
10.
Bosze S. Surface-structure-controlled sectoral zoning of the rare earth elements in fluorite from Long Lake, New York, and Bingham, New Mexico, USA.
Geochim Cosmochim Acta,2002,66:997-1009
|
CSCD被引
1
次
|
|
|
|
11.
Buhn B. Fluid-rock interaction during progressive migration of carbonatitic fluids, derived from small-scale trace element and Sr, Pb isotope distribution in hydrothermal fluorite.
Geochim Cosmochim Acta,2003,67:4577-4595
|
CSCD被引
6
次
|
|
|
|
12.
Chesley J T. Samarium-Neodymium Direct Dating of Fluorite Mineralization.
Science,1991,252:949-951
|
CSCD被引
51
次
|
|
|
|
13.
Dill H G. REE contents, REE minerals and Sm/Nd isotopes of granite-and unconformity-related fluorite mineralization at the western edge of the Bohemian Massif: With special reference to the Nabburg-WolsendorfDistrict, SE Germany.
Ore Geology Reviews,2011,40:132-148
|
CSCD被引
5
次
|
|
|
|
14.
Eppinger R G. Variation of Trace-Elements and Rare-Earth Elements in Fluorite-a Possible Tool for Exploration.
Econ. Geol. Bull. Soc,1990,85:1896-1907
|
CSCD被引
5
次
|
|
|
|
15.
Fleischer M. The lanthanide elements in fluorite.
Indian Mineralogist,1969,10:36-39
|
CSCD被引
1
次
|
|
|
|
16.
Fouke B W. Surface Structural Controls on Dolomite Composition-Evidence from Sectoral Zoning.
Geochim Cosmochim Acta,1992,56:4015-4024
|
CSCD被引
1
次
|
|
|
|
17.
Gagnon J E. Compositional heterogeneityin fluorite and the genesis of fluorite deposits: Insights from LA-ICP-MS analysis.
Can. Mineral,2003,41:365-382
|
CSCD被引
9
次
|
|
|
|
18.
Gagnon J E. The composition and originof hydrothermal fluids in a NYF-type granitic pegmatite, South Platte District, Colorado: Evidence from LA-ICP-MS analysis of fluorite-and quartz-hosted fluidinclusions.
Can. Mineral,2004,42:1331-1355
|
CSCD被引
5
次
|
|
|
|
19.
Hill G T. Geochemistry of southwestern New Mexico fluorite occurrences implications for precious metals exploration in fluorite-bearing systems.
J. Geochem. Explor,2000,68:1-20
|
CSCD被引
3
次
|
|
|
|
20.
Kempe U. Stabilisation of divalent rareearth elements in natural fluorite.
Miner. Petrol,2002,76:213-234
|
CSCD被引
5
次
|
|
|
|
|