稳定同位素分馏蒸汽压效应的计算方法
Theoretical estimation of vapor pressure isotope effects
查看参考文献39篇
文摘
|
稳定同位素分馏的蒸汽压效应(vapor pressure isotope effects,简称VPIE),在地球化学和天体化学上有着非常重要的研究意义。大部分情况下,由于轻重同位素体具有不同的蒸汽压,在经历挥发和蒸发过程时,含有重同位素的物种挥发得慢,轻同位素物种挥发得快,最终结果导致凝聚相富集重同位素,气相含有较多的轻同位素。在地球化学上, VPIE直接同非常重要的地学参数--同位素平衡分馏系数α联系在一起。本文应用Bigeleisen提出的方法,直接将VPIE和约化配分函数比(RPFR)相联系,只需要通过理论计算获得两种物质的简谐振动频率,就能够得到非高压情况下该物质的 VPIE。本文以水和硫镉矿(CdS)为例,详细介绍了如何计算蒸发和气化过程VPIE的方法,并指出了其在天体化学和矿床学中的一些潜在应用。 |
其他语种文摘
|
The vapor pressure isotope effects (VPIE) has important applications in geosciences and cosmochemistry. Because different isotopologues have different saturated vapor pressures, the light isotopologues usually volatilize faster than heavy ones during volatilization processes, resulting in isotopic fractionations between the condensed phase and the gaseous phase. There is a direct connection between the VPIE and the isotope fractionation factor α. If we can obtain the VPIE of any compound, we can also obtain its isotope fractionation factorαbetween its condensed phase and gaseous phase. Using the method suggested by Bigeleisen, we show how to calculate the VPIE through calculating reduced partition function ratio (RPFR) of different isotopologues. Bigeleisen simplified such calculation into a way that only the harmonic frequencies of two isotopologues in condensed and gas phases are needed. In this study, we briefly review the calculation methods of VPIE and its general applications. We also use volatilization processes of water molecule and CdS as examples to show how to theoretically estimate VPIE. |
来源
|
地球化学
,2014,43(1):1-10 【核心库】
|
关键词
|
VPIE
;
Bigeleisen-Mayer公式
;
同位素平衡分馏系数α
;
RPFR
;
挥发
|
地址
|
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0379-1726 |
学科
|
地质学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:5046446
|
参考文献 共
39
共2页
|
1.
Beer R. The equilibration of Deuterium in the Jovian atmosphere.
Astrophys J,1973,182(3):L131-L132
|
CSCD被引
1
次
|
|
|
|
2.
Merlivat L. Fractionnement isotopique lors des changements d'etat solide-vapeur et liquide vapeur de l'eauades temperatures inferieures a 0℃.
Tellus,1967,19(1):122-127
|
CSCD被引
3
次
|
|
|
|
3.
Armstrong G T. The vapor pressures of the deuteromethanes.
J Chem Phys,1953,21(7):1297-1298
|
CSCD被引
2
次
|
|
|
|
4.
Fouchet T. Vapor pressure isotope fractionation effects in planetary atmospheres: Application to Deuterium.
Icarus,2000,144(1):114-123
|
CSCD被引
2
次
|
|
|
|
5.
Young E D. Assessing the implications of K isotope cosmochemistry for evaporation in the preplanetary solar nebula.
Earth Planet Sci Lett,2000,183(1):321-333
|
CSCD被引
4
次
|
|
|
|
6.
Young E D. The isotope geochemistry and cosmochemistry of magnesium.
Rev Mineral Geochem,2004,55(1):197-230
|
CSCD被引
26
次
|
|
|
|
7.
Javoy M. First-principles investigation of equilibrium isotopic fractionation of O-and Si-isotopes between refractory solids and gases in the solar nebula.
Earth Planet Sci Lett,2012,319/320:118-127
|
CSCD被引
4
次
|
|
|
|
8.
Henley R. Magmatic vapor plumes and ground-water interaction in porphyry copper emplacement.
Econ Geol,1978,73(1):1-20
|
CSCD被引
34
次
|
|
|
|
9.
Hedenquist J W. The role of magmas in the formation of hydrothermal ore deposits.
Nature,1994,370(6490):519-527
|
CSCD被引
331
次
|
|
|
|
10.
Heinrich C A. Segregation of ore metals between magmatic brine and vapor: a fluid inclusion study using PIXE microanalysis.
Econ Geol,1992,87(6):1566-1583
|
CSCD被引
56
次
|
|
|
|
11.
Migdisov A A. Solubility of chlorargyrite (AgCl) in water vapor at elevated temperatures and pressures.
Geochim Cosmochim Acta,1999,63(22):3817-3827
|
CSCD被引
22
次
|
|
|
|
12.
Archibald S. The stability of Au-chloride complexes in water vapor at elevated temperatures and pressures.
Geochim Cosmochim Acta,2001,65(23):4413-4423
|
CSCD被引
27
次
|
|
|
|
13.
Moynier F. Volatilization induced by impacts recorded in Zn isotope composition of ureilites.
Chem Geol,2010,276(3):374-379
|
CSCD被引
8
次
|
|
|
|
14.
Paniello R C. Zinc isotopic evidence for the origin of the Moon.
Nature,2012,490(7420):376-379
|
CSCD被引
19
次
|
|
|
|
15.
Wombacher F. Cadmium stable isotope cosmochemistry.
Geochim Cosmochim Acta,2008,72(2):646-667
|
CSCD被引
14
次
|
|
|
|
16.
Wang J. Chemical and isotopic fractionation during the evaporation of the FeO-MgO-SiO2-CaO-Al2O3-TiO2 rare earth element melt system.
Geochim Cosmochim Acta,2001,65(3):479-494
|
CSCD被引
1
次
|
|
|
|
17.
Estrade N. Mercury isotope fractionation during liquid-vapor evaporation experiments.
Geochim Cosmochim Acta,2009,73(10):2693-2711
|
CSCD被引
23
次
|
|
|
|
18.
Larimer J W. Chemical fractionations in meteorites-II. Abundance patterns and their interpretation.
Geochim Cosmochim Acta,1967,31(8):1239-1270
|
CSCD被引
2
次
|
|
|
|
19.
Larimer J W. Chemical fractionations in meteorites-I. Condensation of the elements.
Geochim Cosmochim Acta,1967,31(8):1215-1238
|
CSCD被引
4
次
|
|
|
|
20.
Taylor R. Crystallographic evidence for the existence of C-H-O, C-H-N, and C-H-Cl hydrogen bonds.
J Am Chem Soc,1982,104(19):5063-5070
|
CSCD被引
26
次
|
|
|
|
|