帮助 关于我们

返回检索结果

基于空域压缩采样的水声目标DOA估计方法
DOA Estimation Method Based on Spatial Compressive Sampling for Underwater Acoustic Target

查看参考文献13篇

文摘 在空域存在稀疏观测约束条件下,传统的水声目标方位DOA估计方法在水下无人航行器等小型平台的应用中往往精度低或者失效。针对这一问题,提出了一种基于空域压缩采样的水声目标DOA估计方法。该方法通过建立水下目标的空域稀疏模型,对水下目标在空域进行压缩采样,并利用联合稀疏重构实现水下目标的DOA估计。仿真实验表明:与传统方法相比,该方法在较少阵元、较小阵列间隔和较少快拍下估计精度相对提高;而在较低信噪比下估计成功率能够提高50%以上,均方误差也能降低到0.2°以下。
其他语种文摘 The traditional DOA (direction of arrival) estimation methods of underwater acoustic target often have poor estimation performance or provide inaccurate estimation result under the constraint of spatial sparse observation based on the small platform (such as unmanned underwarter vehicle). A new high-accuracy DOA estimation algorithm based on spatial compressive sampling for underwater acoustic target is proposed by analyzing the space sparsity of underwater target location. The algorithm is used to establish a spatial sparse description model of underwater target, and compress the underwater target in spatial domain, and then the joint sparse reconstruction algorithm is used to achieve the DOA estimation of underwater acoustic target. The simulation results show that the method can increase the DOA estimation accuracy in the case of less array elements and less snapshots, and the high success rate can be increased by more than 50%, and the root mean square error in the low SNR environment can be maintained at 0.2°or less.
来源 兵工学报 ,2013,34(11):1479-1483 【核心库】
DOI 10.3969/j.issn.1000-1093.2013.11.022
关键词 海洋工程与技术 ; 水声目标定位 ; 压缩感知 ; 水下无人航行器 ; 稀疏重构
地址

江苏科技大学电子信息学院, 江苏, 镇江, 212003

语种 中文
文献类型 研究性论文
ISSN 1000-1093
学科 社会科学总论
基金 国家自然科学基金 ;  江苏高校优势学科建设工程-船舶与海洋工程项目 ;  江苏省高校自然科学基金
文献收藏号 CSCD:5027331

参考文献 共 13 共1页

1.  兰志林. 无人水下航行器发展. 国防科技,2008,29(2):13-15 CSCD被引 1    
2.  王蓬. 军用UUV的发展与应用前景展望. 鱼雷技术,2009,17(1):7-9 CSCD被引 1    
3.  Bilik I. Spatial compressive sensing approach for field directionality estimation. 2009 IEEE Radar Conference,2009:1-5 CSCD被引 1    
4.  Bilik I. Spatial compressive sensing for direction-of-arrival estimation of multiple sources using dynamic sensor arrays. IEEE Transactions on Aerospace and Electronic Systems,2011,47(3):1754-1769 CSCD被引 22    
5.  Wang Y. Direction estimation using compressive sampling array processing. The 15th Workshop on Statistical Signal Processing, IEEE,2009:625-628 CSCD被引 1    
6.  Gretsistas A. A multichannel spatial compressed sensing approach for direction of errival estimation. LVA/ICA 9th Intermational Conference Latent Variable Analysis and Signal Separation,2010:458-465 CSCD被引 1    
7.  Candes E J. Compressive sampling. Proceedings oh the International Congress of Mathematicians,2006:22-30 CSCD被引 1    
8.  Candes E J. An introduction to compressive sampling. Signal Processing Magazine, IEEE,2008,25(2):21-30 CSCD被引 796    
9.  Donoho D L. Compressed sensing. IEEE Transactions on Information Theory,2006,52(4):1289-1306 CSCD被引 3019    
10.  Cai T. On recovery of sparse signals via l_1 minimization. IEEE Transaction on Information Theory,2009,55(7):3388-3397 CSCD被引 14    
11.  Li B. Direction estimation under compressive sensing framework: a review and experimental results. IEEE International Conference on Information and Automation,2011:63-68 CSCD被引 2    
12.  Lee K. Subspace methods for joint sparse recovery in compressed sensing. IEEE Trans on Information Theory,2012,58(6):3613-3641 CSCD被引 14    
13.  Berg E. Joint-sparse recovery from multiple measurements,2009 CSCD被引 1    
引证文献 5

1 王彪 一种快速稀疏贝叶斯学习的水声目标方位估计方法研究 声学学报,2016,41(1):81-86
CSCD被引 6

2 井岩 确定性采样的矢量水听器阵列舰船目标方位估计 仪器仪表学报,2016,37(6):1267-1276
CSCD被引 3

显示所有5篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号