六轮独立驱动滑动转向车辆运动控制算法仿真研究
Simulation Study of Motion Control Algorithm for a Six-wheel Independent Drive Skid-steering Vehicle
查看参考文献14篇
文摘
|
依据六轮独立电驱动滑动转向车辆转向原理及车轮扭矩独立可控的特点,结合驱动力优化分配及操控稳定性问题,提出了一种运动控制算法。该算法由速度控制器,转弯控制器和轮胎力最优分配控制器组成。其中,速度控制器和转弯控制器根据车辆状态产生整车所需总的纵向力和转弯横摆力矩,轮胎力最优化分配控制器根据轮胎垂直载荷优化分配各个车轮所需的扭矩。仿真结果表明:垂直载荷较大的轮胎获得了较大的驱动扭矩,与平均分配算法相比,采用轮胎力最优化分配算法,轮胎负荷率降低了9.79%,提高了车辆的操控稳定性。 |
其他语种文摘
|
In view of the steering theory and independently controlled torque of six-wheel independent electric drive skid-steering vehicle, a motion control algorithm is proposed based on the problems of driving force optimum allocation and control stability. The driving control algorithm consists of three parts: a speed controller, a steering controller and a tire force optimum distribution controller. The speed controller and steering controller are designed to determine the generalized longitudinal force and yawing moment required to achieve vehicle steering. The tire force optimization distribution controller determines how much torque should be generated at each wheel based on the vertical load of tire. The simulation results show that the tire having the bigger vertical load has the more driving torque on it. Compared with the equal distribution method, the optimum distribution method shows that the tire load rate is decreased by 9.79%. |
来源
|
兵工学报
,2013,34(11):1461-1468 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2013.11.019
|
关键词
|
控制科学与技术
;
滑动转向
;
独立驱动
;
驱动力分配
;
操控稳定性
|
地址
|
1.
装甲兵工程学院控制工程系, 北京, 100072
2.
总装备部南京军事代表局, 江苏, 南京, 210009
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
自动化技术、计算机技术 |
基金
|
兵器装备预先研究项目
|
文献收藏号
|
CSCD:5027328
|
参考文献 共
14
共1页
|
1.
Kozlowski K. Modeling and control of a 4-wheel skid-steering mobile robot.
International Journal of Apply Math Computer Science,2004,14(4):477-496
|
CSCD被引
8
次
|
|
|
|
2.
Kim J. Motor control algorithm for a 6-wheel independent drive electric vehicle.
SICE-ICASE, 2006. International Joint Conference,2006:2416-2419
|
CSCD被引
1
次
|
|
|
|
3.
Jackson A.
Improving performance of a 6×6 off-road vehicle through individual wheel control, SAE Paper 2002-01-0968,2002:1-8
|
CSCD被引
1
次
|
|
|
|
4.
邢洁.
四轮驱动轮式机器人的差速转向及其力矩匹配,2008
|
CSCD被引
1
次
|
|
|
|
5.
李斌.
面向可控漂移的轮式滑动转向移动机器人研究,2010
|
CSCD被引
1
次
|
|
|
|
6.
马建. 轮胎垂直载荷变化对大客车高速操纵稳定性影响的模拟分析.
中国公路学报,1998,11(1):102-108
|
CSCD被引
3
次
|
|
|
|
7.
Fauroux J C. Improving skid-steering on a 6×6 all-terrain vehicle: a preliminary experimental study.
Proceeding of IFToMM 2007. The 12th World Congress in Mechanism and Machine Science,2007:17-21
|
CSCD被引
1
次
|
|
|
|
8.
Peery T E. H_∞ optimal repetitive controller design for stable plants.
Journal of Dynamic Systems, Measurement and Control,1997,119(3):541-547
|
CSCD被引
3
次
|
|
|
|
9.
Visioli A. Modified anti-windup scheme for PID controllers.
IEEE Proceedings-Control Theory and Applications,2003,150(1):49-54
|
CSCD被引
5
次
|
|
|
|
10.
Meldrum W R.
Modeling and simulation of a differential torque steered wheeled vehicle. Detroit Arsenal Warren,1999
|
CSCD被引
1
次
|
|
|
|
11.
Choi J Y. A study on an independent steering & driving control algorithm for 6WS/6WD vehicles.
International Conference on Control, Automation and Systems 2010,2010:1491-1495
|
CSCD被引
1
次
|
|
|
|
12.
Tahami F. A fuzzy logic direct yaw-moment control system for all-wheel-drive electric vehicles.
Vehicle System Dynamics,2004,41(3):203-221
|
CSCD被引
13
次
|
|
|
|
13.
Kang J. Skid steering-based control of a robotic vehicle with six in-wheel drives.
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,2010,224(11):1369-1391
|
CSCD被引
9
次
|
|
|
|
14.
Kaloust J. A robust nonlinear skid-steering control design applied to the MULE (6×6) unmanned ground vehicle.
Defense and Security Symposium,2006:623025-623025-10
|
CSCD被引
1
次
|
|
|
|
|