生物扰动对沉积物中污染物环境行为与生物可利用性的影响
Influence of Bioturbation on Fate and Bioavailability of Sediment-Associated Contaminants
查看参考文献55篇
文摘
|
疏水性有机污染物进入环境水体后易于与沉积物结合,对沉积物中的底栖动物造成危害。底栖动物引起的生物扰动作用可以通过改变沉积物的地球化学性质,对其中污染物的赋存形态、迁移转化和生物可利用性产生重要影响。在综述了国内外生物扰动影响沉积物中污染物环境行为和生物可利用性的最新研究进展基础上,重点讨论了沉积物颗粒交换、水体环境条件改变、疏水有机污染物解吸释放过程以及对生物扰动影响的定量化表征。最后对该研究方向进行了展望,指出应重点研究多种污染物及不同生物共存条件下的生态效应,以及造成沉积物扰动的影响因素的定量化表征等。 |
其他语种文摘
|
Hydrophobic organic contaminants and heavy metals tend to bind to the solid phases including bed sediments and suspended particles, in aquatic ecosystems. Sediment-associated contaminants may be released to water body under certain conditions. Bioturbation caused by the activities of benthic organisms is one of the factors affecting fate of chemicals in sediment. By altering sediment geochemistry characteristics, the bioturbation influenced on distribution, transport, bioavailability and toxicity of contaminants in sediment. This paper reviewed the recent studies on how bioturbation affects environmental fate and risks of sediment-associated contaminants, with a focus on movements of sediment particles, alteration of characteristics of water body, desorption of contaminants from sediment, and quantitative characterization of bioturbation. In the future, more studies will be required to better understand the effects of bioturbation on multiple classes of contaminants, the influence of bioturbation on bioavailability and toxicity of contaminants to the co-exposed organisms, as well as the quantitative characterization of bioturbation. |
来源
|
生态毒理学报
,2013,8(6):805-816 【核心库】
|
关键词
|
生物扰动
;
疏水性毒害污染物
;
水体沉积物
;
环境行为
;
生物可利用性
|
地址
|
中国科学院广州地球化学研究所, 有机地球化学国家重点实验室, 广州, 510640
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1673-5897 |
学科
|
环境科学基础理论 |
基金
|
国家自然科学基金
;
广东省中国科学院全面战略合作项目
;
中国科学院“百人计划”项目
|
文献收藏号
|
CSCD:5026679
|
参考文献 共
55
共3页
|
1.
Muir D C G. Trends of legacy and new persistent organic pollutants in the circumpolar arctic: Overview, conclusions and recommendations.
Science of the Total Environment,2010,408(15):3044-3051
|
CSCD被引
4
次
|
|
|
|
2.
de Wit C A. Levels and trends of brominated flame retard ants in the Arctic.
Chemosphere,2006,64(2):209-233
|
CSCD被引
38
次
|
|
|
|
3.
Burton G A. Metal bioavailability and toxicity in sediments.
Critical Reviews in Environmental Science and Technology,2010,40(9/10):852-907
|
CSCD被引
9
次
|
|
|
|
4.
Zhang P. Persistent organic pollutant residues in the sediments and mollusks from the Bohai Sea coastal areas, North China: An overview.
Environment International,2009,35(3):632-646
|
CSCD被引
14
次
|
|
|
|
5.
Mehler W T. Identifying the causes of sediment-associated toxicity in urban waterways of the Pearl River Delta, China.
Environmental Science & Technology,2011,45(5):1812-1819
|
CSCD被引
12
次
|
|
|
|
6.
罗勇. 电子废物不当处置的重金属污染及其环境风险评价 Ⅳ.电子废物不当回收地区流域水体沉积物的重金属污染.
生态毒理学报,2008,3(4):343-349
|
CSCD被引
10
次
|
|
|
|
7.
刘红磊. 城市湖泊表层沉积物中的重金属污染现状及其稳定度分析——以武汉墨水湖为例.
生态毒理学报,2007,2(2):214-219
|
CSCD被引
15
次
|
|
|
|
8.
Alexander M. Aging, bioavailability, and overestimation of risk from environmental pollutants.
Environmental Science & Technology,2000,34(20):4259-4265
|
CSCD被引
106
次
|
|
|
|
9.
游静. 沉积物风险评估中的生物可利用性问题.
环境化学学科前沿与进展,2011:391-403
|
CSCD被引
1
次
|
|
|
|
10.
Garner Τ R. Poly cyclic aromatic hydrocarbon contamination in south Carolina salt marsh-tidal creek systems: Relationships among sediments, biota, and watershed land use.
Archives of Environmental Contamination and Toxicology,2009,57(1):103-115
|
CSCD被引
1
次
|
|
|
|
11.
Zhou Ζ L. Desorption of poly cyclic aromatic hydrocarbons from aged and unaged charcoals with and without modification of humic acids.
Environmental Pollution,2010,158(5):1916-1921
|
CSCD被引
9
次
|
|
|
|
12.
Cornelis sen G. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation.
Environmental Science & Technology,2005,39(18):6881-6895
|
CSCD被引
126
次
|
|
|
|
13.
Wang Ζ J. Aging effects on sorption-desorption behaviors of PAHs in different natural organic matters.
Journal of Colloid and Interface Science,2012,382(1):117-122
|
CSCD被引
1
次
|
|
|
|
14.
You J. Chemical techniques for assessing bioavailability of sediment-associated contaminants: SPME versus Tenax extraction.
Journal of Environmental Monitoring,2011,13(4):792-800
|
CSCD被引
12
次
|
|
|
|
15.
You J. Chemical availability and sediment toxicity of pyrethroid insecticides to Hyalella azteca: Application to field sediment with unexpectedly low toxicity.
Environmental Toxicology and Chemistry,2008,27(10):2124-2130
|
CSCD被引
4
次
|
|
|
|
16.
Xu Υ P. Comparison of five methods for measuring sediment toxicity of hydrophobic cantaminants.
Environmental Science & Technology,2007,41(24):8394-8399
|
CSCD被引
1
次
|
|
|
|
17.
孙刚. 生物扰动在水层-底栖界面耦合中的作用.
生态环境,2006,15(5):1106-1110
|
CSCD被引
17
次
|
|
|
|
18.
Lin J P. Bioturbation in burgess shale-type lagers tatten - Case study of trace fossil-body fossil association from the Kaili Biota (Cambrian Series 3),Guizhou, China.
Palaeogeography Palaeoclimatology Palaeoecology,2010,292(1/2):245-256
|
CSCD被引
3
次
|
|
|
|
19.
Soares C. Density-dependent effects of bioturbation by the clam, Scrobicularia plana, on the erodibility of estuarine sediments.
Marine and Freshwater Research,2009,60(7):737-744
|
CSCD被引
1
次
|
|
|
|
20.
Lecroart P. Bioturbation, short-lived radioisotopes, and the tracer-dependence of biodiffusion coefficients.
Geochimica Et Cosmochimica Acta,2010,74(21):6049-6063
|
CSCD被引
1
次
|
|
|
|
|