华南中生代与同熔型花岗岩有关的铜铅锌多金属矿床时空分布及其岩浆源区特征
The Mesozoic syntexis type granite-related Cu-Pb-Zn mineralization in South China
查看参考文献104篇
文摘
|
花岗岩及其成矿作用一直是地质学家关注的重要科学问题。本文在回顾花岗岩分类及其成矿专属性研究的基础上,以华南同熔型花岗岩为例,探讨了华南地区与同熔型花岗岩有关的铜铅锌矿床的特点、时空格架及其分布规律,研究了与成矿有关的同熔型花岗岩的特点、源区属性及其与华南古老地壳的关系。本文认为华南地区与同熔型花岗岩有关的铜铅锌成矿作用是壳幔相互作用的结果,且这些同熔型花岗岩具有过渡类型的特征。岩浆源区属性与成矿类型、成矿规模的关系存在着某种制约联系,该类矿床的形成是不同时期华南地区古老地壳改造的结果。 |
其他语种文摘
|
Granites and related mineralization have been an important scientific issue of economic geologists. In the past a few decades, much progress have been made on the research of granitoid series and related metal commodities. It hosts a huge Mesozoic magmatic province containing abundant W-Sn-Mo-Cu-Pb-Zn mineralization in South China, but the scale of Cu-Pb-Zn deposits is relatively smaller than that of W-Sn deposits. Based on the review on classification and metallogenic specialization of granites, the paper discusses spatial and temporal distribution of Mesozoic syntexis type granite-related Cu-Pb-Zn mineralization in South China, the characteristics of syntexis type granite, magma source, and its relationship to re-melting of the ancient crustal materials. This paper argues that the source magma of syntexis type granite is closely associated with Cu-Pb-Zn mineralization. The size of ore, such as, the scale of copper is associated with the proportions of mantle contribution, but the lead-zinc mineralization is primarily related to the contribution of crustal materials. There is also difference of mantle contributed to the copper mineralization in the different ore-concentrating district. The paper concludes that the Mesozoic syntexis type granite is characteristics of transition type granites between typical porphyry copper deposit-related and W-Sn deposit-related, the Cu-Pb-Zn mineralization was resulted from the re-working of ancient crustal materials, in South China. |
来源
|
岩石学报
,2013,29(12):4037-4050 【核心库】
|
关键词
|
同熔型花岗岩
;
铜铅锌矿床
;
岩浆源区
;
成矿规模
;
古老地壳改造
;
华南
|
地址
|
1.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳, 550002
2.
南京大学地球科学与工程学院, 内生金属矿床成矿机制研究国家重点实验室, 南京, 210093
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0569 |
学科
|
地质学 |
基金
|
国家973计划
;
国家自然科学基金项目
;
中国科学院“百人计划”项目
|
文献收藏号
|
CSCD:5018438
|
参考文献 共
104
共6页
|
1.
Ahmadian J. High magmatic flux during Alpine-Himalayan collision: Constraints from the Kale-Kafi complex,central Iran.
Geological Society of America Bulletin,2009,121(5/6):857-868
|
CSCD被引
10
次
|
|
|
|
2.
Baker T. A comparison of granite-related tin, tungsten, and gold-bismuth deposits: Implications for exploration.
SEG Newsletter,2005,61:5-16
|
CSCD被引
2
次
|
|
|
|
3.
Barnes H L.
Geochemistry of Hydrothermal Ore Deposits,1997:1-963
|
CSCD被引
4
次
|
|
|
|
4.
Blevin P L. The role of magma sources,oxidation states and fractionation in determining the granite metallogeny of eastern Australia.
Transactions of the Royal Society of Edinburgh, Earth Science,1992,83(1/2):305-316
|
CSCD被引
61
次
|
|
|
|
5.
Blevin P L. Chemistry,origin and evolution of mineralized granites in the Lachlan fold belt, Australia: The metallogeny of I-and S-type granites.
Economic Geology,1995,90(6):1604-1619
|
CSCD被引
50
次
|
|
|
|
6.
Castillo P R. An overview of adakite petrogenesis.
Chinese Science Bulletin,2006,51(3):257-268
|
CSCD被引
152
次
|
|
|
|
7.
Cerny P. Granite-related ore deposits.
Economic Geology,100~(th) Anniversary Volume,2005:337-370
|
CSCD被引
20
次
|
|
|
|
8.
Chappell B W. Two contrasting granite types.
Pacific Geology,1974,8:173-174
|
CSCD被引
527
次
|
|
|
|
9.
Chappellal B W. Origin of infracrustal (I-type) granite magmas.
Transactions of the Royal Society of Edinburgh:Earth Sciences,1988,79(2/3):71-86
|
CSCD被引
74
次
|
|
|
|
10.
Cline J S. Can economic porphyry copper mineralization be generatedby a typical calc-alkaline melt?.
Journal of Geophysical Research,1991,96(B5):8113-8126
|
CSCD被引
85
次
|
|
|
|
11.
Defant M J. Evidence suggests slab melting in arc magmas.
Eos,Transactions American Geophysical Union,2001,82(6):65-69
|
CSCD被引
99
次
|
|
|
|
12.
Department of Geology.
Granitoids of Different Epoch and Their Relationship with Mineralization in South China, (in Chinese),1981:1-408
|
CSCD被引
1
次
|
|
|
|
13.
Farmer G L. Origin of Mesozoic and Tertiary granite in the western United States and implications for pre-Mesozoic crustal structure: 2. Nd and Sr isotopic studies of unmineralized and Cu-and Mo-mineralized granite in the Precambrian craton.
Journal of Geophysical Research,1984,89(B12):10141-10160
|
CSCD被引
10
次
|
|
|
|
14.
Griffiths J R. Metallogeny and tectonics of porphyry copper-molybdenum deposits in British Columbia.
Canadian Journal of Earth Sciences,1983,20(6):1000-1018
|
CSCD被引
5
次
|
|
|
|
15.
Hart C J R. Source and redox controls on metallogenic variations in intrusion-related ore systems, Tombstone-Tungssten Belt, Yukon Territory, Canada.
Earth Sciences,2004,95(1/2):339-356
|
CSCD被引
1
次
|
|
|
|
16.
Haschke M. Copper mineralization prevented by arc-root delamination during Alpine-Himalayan collision in central Iran.
Economic Geology,2010,105(4):855-865
|
CSCD被引
12
次
|
|
|
|
17.
Hou Z Q. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet.
Mineralium Deposita,2013,48(2):173-192
|
CSCD被引
55
次
|
|
|
|
18.
Institute of Geochemistry.
Geochemistry of Granitoids in South China, (in Chinese),1979:1-421
|
CSCD被引
1
次
|
|
|
|
19.
Ishihara S. The magnetite-series and ilmenite-series granitic rocks.
Mining Geology,1977,27(145):293-305
|
CSCD被引
63
次
|
|
|
|
20.
Ishihara S. The redox state of granitoids relative to tectonic setting and earth history: The magnetite-ilmenite series 30 years later.
Earth Sciences,2004,95(1/2):23-34
|
CSCD被引
1
次
|
|
|
|
|