激光冲击强化对NiTi形状记忆合金力学性质的影响
Mechanical Properties of NiTi Shape Memory Alloy Processed by Laser Shock Peening
查看参考文献23篇
文摘
|
采用激光冲击强化技术对初始相为奥氏体的NiTi形状记忆合金进行强化处理,研究了NiTi形状记忆合金力学性质的变化。实验发现激光冲击强化后NiTi合金的影响层深度在300 μm左右,表面硬度提高了约10%。通过数字图像相关技术从拉伸过程拍摄的照片中得到材料的应变,从而获得NiTi合金的应力应变关系的变化。激光冲击强化后NiTi样品的超弹性应力应变曲线表明相变应力几乎没有变化,马氏体的屈服应力下降了约100 MPa,最大相变应变减少了13%。激光冲击强化产生的超高应变率的塑性变形导致材料硬度提高,超弹性应变减少。 |
其他语种文摘
|
An austenite NiTi shape memory alloy is processed by laser shock peening (LSP), and the mechanical properties is investigated. It is found that the thickness of shock affected layer is about 300 μm. The surface hardness of the specimen is increased by approximately 10% after LSP. The strain of the specimen is extracted from the images recorded in the tension by the digital image correlation technique in order to obtain the stress-strain curves. The superelastic stress-strain curves of the fully LSP processed NiTi material show no change in phase transition stress, the martensite yield stress decreases to about 100 MPa, and a loss of maximum transition strain about 13% after LSP. The ultrahigh-strain-rate plastic deformation by LSP results in dense dislocation underneath the surface which is responsible for the hardness increase and superelastic strain loss. |
来源
|
中国激光
,2013,40(11):1103002-1-1103002-6 【核心库】
|
关键词
|
激光技术
;
激光冲击强化
;
形状记忆合金
;
数字图像相关
;
马氏体相变
;
超弹性
;
塑性变形
|
地址
|
中国科学院力学研究所, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0258-7025 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
;
中国科学院科研装备研制项目
|
文献收藏号
|
CSCD:5018153
|
参考文献 共
23
共2页
|
1.
Otsuka K.
Shape Memory Materials,1998:49-64
|
CSCD被引
26
次
|
|
|
|
2.
Shabalovskaya S. Critical overview of Nitinol surfaces and their modifications for medical applications.
Acta Biomater,2008,4(3):447-467
|
CSCD被引
17
次
|
|
|
|
3.
Lindemann J. Effect of shot peening on fatigue performance of a lamellar titanium aluminide alloy.
Acta Mater,2006,54(4):1155-1164
|
CSCD被引
24
次
|
|
|
|
4.
Miao H Y. Experimental study of shot peening and stress peen forming.
J Mater Process Technol,2010,210(15):2089-2102
|
CSCD被引
41
次
|
|
|
|
5.
Montross C S. Laser shock processing and its effects on microstructure and properties of metal alloys: a review.
Inter J Fatigue,2002,24(10):1021-1036
|
CSCD被引
202
次
|
|
|
|
6.
Peyer P. Laser shock processing: a review of the physics and applications.
Optical and Quantum Electronics,1995,27(12):1213-1229
|
CSCD被引
111
次
|
|
|
|
7.
李伟. 激光冲击强化技术的发展和应用.
激光与光电子学进展,2008,45(12):15-19
|
CSCD被引
60
次
|
|
|
|
8.
Zhang W W. Micro scale laser shock processing of metallic components.
Journal of Manufacturing Science and Engineering,2002,124(2):369-378
|
CSCD被引
36
次
|
|
|
|
9.
Wang Y N. Response of thin films and substrate to micro-scale laser shock peening.
Journal of Manufacturing Science and Engineering,2007,129(3):485-496
|
CSCD被引
3
次
|
|
|
|
10.
刘小冬. 脉冲激光冲击处理下电镀铜薄膜疲劳特性分析.
机械强度,2012,34(5):751-756
|
CSCD被引
1
次
|
|
|
|
11.
Ye Chang. Bimodal nanocrystallization of NiTi shape memory alloy by laser shock peening and post-deformation annealing.
Acta Materialia,2011,59(19):7219-7227
|
CSCD被引
13
次
|
|
|
|
12.
Eberl C.
Free Digital Image Correlation and Tracking Functions
|
CSCD被引
1
次
|
|
|
|
13.
鲁金忠. 激光单次冲击LY2铝合金微观强化机制研究.
中国激光,2010,37(10):2662-2666
|
CSCD被引
29
次
|
|
|
|
14.
张凌峰. 高锰钢在激光冲击作用下的微观特征.
中国激光,2011,38(6):0603025
|
CSCD被引
12
次
|
|
|
|
15.
Chu T C. Applications of digital-image-correlation techniques to experimental mechanics.
Exp Mech,1985,25(3):232-244
|
CSCD被引
133
次
|
|
|
|
16.
Sutton M A. Application of an optimized digital correlation method to planar deformation analysis.
Image Vis Comput,1986,4(3):143-150
|
CSCD被引
24
次
|
|
|
|
17.
Schreier H W.
Investigation of Two and Three-Dimensional Image Correlation Techniques with Applications in Experimental Mechanics,2003
|
CSCD被引
6
次
|
|
|
|
18.
Pan Bing. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review.
Meas Sci Technol,2009,20(6):062001
|
CSCD被引
212
次
|
|
|
|
19.
Berthe L. Shock waves from a water-confined laser-generated plasma.
J Appl Phys,1997,82:2826-2832
|
CSCD被引
42
次
|
|
|
|
20.
Millett J C F. The shock-induced mechanical response of the shape memory alloy, NiTi.
Materials Science and Engineering: A,2004,378(1/2):138-142
|
CSCD被引
7
次
|
|
|
|
|