W同位素分析方法进展及全岩样品的消解研究
PROGRESS IN ANALYTICAL METHODS OF TUNGSTEN ISOTOPE AND EXPERIMENTAL RESEARCH ON DIGESTION OF WHOLE ROCK SAMPLES
查看参考文献25篇
文摘
|
通过对W同位素分析方法,包括样品的消解、W的化学分离与纯化、W同位素的质谱测定进行比较研究发现,W同位素各种分析方法中AG1X-8 (200 mesh?400 mesh, C1~-)阴离子树脂是进行W的化学分离与纯化的有效载体,多接收器电感耦合等离子质谱仪(MC-ICPMS)是目前进行W同位素测定的最佳设备。以路南陨石和标准样品NIST SRM612为样本,进行以W同位素分析为目的的全岩样品消解实验研究,主要探讨温度对消解效果的影响。实验结果显示路南陨石在150℃下消解一周才能达到较好的消解效果,而NISTSRM612在150℃下消解48 h就可以充分消解。同时,实验结结果证明, 在使用PFA ( perfluoroalkoxy)材质的Savillex消解罐时,用H_2SO_4消除样品中的Ca、Mg 对W共沉淀的影响比较困难。 |
其他语种文摘
|
Based on research progresses review in W isotopic analytical methods and their geologic applications, advantages and disadvantages among different methods for W isotope analysis are compared in this paper. It is pointed out that Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) is currently the best instrument for tungsten isotope measurement, and that chemical treatment process is the key step to acquiring W isotopic data with high precision and accuracy. Samples of Lunan meteorite and NIST SRM612 were selected for experimental research on digestion of whole rocks and temperature effect on sample digestion was mainly investigated. The experiments have showed that one week was needed for complete dissolution of the Lunan meteorite at 150 ℃ , whereas only 48 hours needed for NIST SRM612 at the same temperature. Meanwhile, the experimental results show that the co-precipitation problem of Ca and Mg with W is relatively difficult to be resolved by adding H_2SO_4 solution during the digestion process. |
来源
|
矿物岩石
,2013,33(3):86-92 【核心库】
|
关键词
|
W同位素
;
离子交换树脂
;
化学分离
;
多接收器等离子体质谱仪
|
地址
|
1.
中国科学院地球化学研究所, 贵州, 贵阳, 550002
2.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵州, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-6872 |
学科
|
地质学 |
基金
|
中国科学院广州地球化学研究所知识创新工程领域前沿项目
;
贵州省黔科合重大专项字
|
文献收藏号
|
CSCD:5005928
|
参考文献 共
25
共2页
|
1.
Harper C L. ~(182) Hf-~(182) W: New cosmochronometric constraints on terrestrial accretion, core formation, the astrophysical site of the r-process,and the origin of the solar system.
Lunar Planetary Science,1991,22:515-516
|
CSCD被引
1
次
|
|
|
|
2.
Burkhardt C. Hf - W mineral isochron for Ca, Al-rich inclusions: Age of the solar system and the timing of core formation in planetesimals.
Geochimica et Cosmochimica Acta,2008,72:6177-6197
|
CSCD被引
3
次
|
|
|
|
3.
Halliday A N. Tungsten isotopes and the early development of the Earth and Moon.
Geochimica et Cosmochimica Acta,1999,63:4157-4179
|
CSCD被引
3
次
|
|
|
|
4.
Lee D C. Hafnium-tungsten chronometry and the timing of terrestrial core formation.
Nature,1995,378:771-774
|
CSCD被引
6
次
|
|
|
|
5.
Vockenhuber C. New half-life measurement of ~(182) Hf : Improved chronometer for the early Solar System.
Physical Review Letters,2004,93(17):172501-1-172501-4
|
CSCD被引
13
次
|
|
|
|
6.
Lee D C. Hf-W internal isochrons for ordinary chondrites and the initial~(182) Hf/~(180) Hf of the solar system.
Chemical Geology,2000,169:35-43
|
CSCD被引
2
次
|
|
|
|
7.
Kleine T. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry.
Nature,2002,418:952-955
|
CSCD被引
22
次
|
|
|
|
8.
Kleine T. Hf-W Chronometry of lunar metals and the age and early differentiation of the Moon.
Science,2005,310:1671-1674
|
CSCD被引
10
次
|
|
|
|
9.
Kleine T. ~(182)Hf-~(182)W isotope systematics of chondrites,eucrites,and martian meteorites: Chronology of core formation and early mantle differentiation in Vesta and Mars.
Geochimica et Cosmochimica Acta,2004,68:2935-2946
|
CSCD被引
6
次
|
|
|
|
10.
Yin Q Z. A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites.
Nature,2002,418:949-952
|
CSCD被引
11
次
|
|
|
|
11.
Lee D C. Core formation on Mars and differentiated asteroids.
Nature,1997,388:854-857
|
CSCD被引
6
次
|
|
|
|
12.
Halliday A N. Early evolution of the earth and moon:new constraints from Hf-W isotope geochemistry.
Earth and Planetary Science Letters,1996,142:75-89
|
CSCD被引
8
次
|
|
|
|
13.
Horan M F. ~(182)W and~(187) Re-~(187) Os systematics of iron meteorites. Chronology for melting, differentiation, and crystallization in asteroids.
Geochimica et Cosmochimica Acta,1998,62(3):545-554
|
CSCD被引
5
次
|
|
|
|
14.
Shields W R. Absolute Isotopic Abundance Ratio and the Atomic Weight of Chlorine.
Journal of the American Chemical Society,1962,84:1519-1522
|
CSCD被引
5
次
|
|
|
|
15.
Catanzaro E J. Absolute isotopic abundance ratio and the atomic weight of bromine.
Journal of Research of the National Institute of Standards and Technology. A,1964,68:593-601
|
CSCD被引
1
次
|
|
|
|
16.
Heumann K G. Application of an economical and small thermal ionization mass spectrometer for accurate anion trace analyses.
Fresenius Journal of Analytical Chemistry,1985,320:457-462
|
CSCD被引
1
次
|
|
|
|
17.
Volkening J. Osmium isotope ratio determinations by negative thermal ionization mass spectrometry.
International Journal of Mass Spectrometry and Ion Processes,1991,105:147-159
|
CSCD被引
32
次
|
|
|
|
18.
Volkening J. Tungsten isotope ratio determinations by negative thermal ionization mass spectrometry.
International Journal of Mass Spectrometry and Ion Processes,1991,107:361-368
|
CSCD被引
6
次
|
|
|
|
19.
Quitte G. High precision Hf-W isotopic measurements in meteoritic material using Negative Thermal lonisation Mass Spectrometry (NTIMS).
Geostandards Newsletter,2002,26:149-160
|
CSCD被引
4
次
|
|
|
|
20.
Harper C L. Evidence for ~(182)Hf in the early solar system and constraints on the timescale of terrestrial accretion and core formation.
Geochimica et Cosmochimica Acta,1996,60:1131-1153
|
CSCD被引
6
次
|
|
|
|
|