剪切变形下地幔矿物岩石电导率测量的新方法
A new method to measure the electrical conductivity of mantle minerals and rocks under shear deformation
查看参考文献43篇
文摘
|
本文中简要介绍了如何利用DIA型大压机同时在剪切变形和高温高压下测量地幔矿物岩石电导率的新方法.首先阐述了DIA型大压机的工作原理和剪切变形实验的步骤,然后选择了两个典型的实例分别从样品合成、实验组装、微组织结构观察等方面简要介绍了剪切变形下电导率测量的流程和最新进展,最后探讨了新结果在地球物理学方面的一些应用及存在的技术问题.目前实验研究表明:含一定量磁铁矿的蛇纹石在剪切变形下不可能在俯冲板块的表面形成相互连接的高导层,因而磁铁矿假说不能解释俯冲带的高电导率异常;此外,发现剪切应力能够诱发熔体在含部分熔融的橄榄岩颗粒边界的重新分布,从而熔体能够形成相互连接的各向异性网络,并导致与大地电磁观测结果相一致的高电导率各向异性. |
其他语种文摘
|
In this paper, a new method was briefly introduced to measure the electrical conductivity of mantle minerals and rocks by using the DIA-type apparatus simultaneously under the shear deformation and high-temperature and high-pressure. Firstly, the principle of the DIA-type apparatus and the experimental procedures of shear deformation were outlined. Secondly, two typical examples were used to display the work flow and recent advances in conductivity measurement under shear deformation in the light of sample synthesis, cell assembly, microstructural observations and so on. Finally, the author discussed the geophysical implications of the present new results and pointed out some technical matters which need more improvements in future. The present experimental results show that the interconnection of magnetite in serpentinites by shear deformation is not expected as an origin of high conductivity anomaly occasionally observed at the slab interface in the mantle wedge. On the other hand, it is found that shear stress can induce the redistribution of melt in partially molten peridotite and form an anisotropically well-interconnected network under shear, which is most likely to explain the high anisotropic conductivity anomalies observed by MT surveys at the top of the asthenosphere. |
来源
|
地球物理学进展
,2013,28(5):2467-2474 【核心库】
|
关键词
|
剪切变形
;
电导率
;
高温高压
;
各向异性
;
矿物
;
岩石
|
地址
|
冈山大学地球物质科学研究所, 日本, 三朝, 682-0193
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-2903 |
学科
|
地球物理学 |
基金
|
国家自然科学基金
;
日本文部省杰出研究中心项目共同资助
|
文献收藏号
|
CSCD:4994184
|
参考文献 共
43
共3页
|
1.
Lizarralde D. Northeastern Pacific mantle conductivity profile from long-period magnetotelluric sounding using Hawaii-to-California submarine cable data.
J.Geophys.Res,1995,100(B9):17837-17854
|
CSCD被引
14
次
|
|
|
|
2.
Wei W B. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies.
Science,2001,292(5517):716-718
|
CSCD被引
127
次
|
|
|
|
3.
Evans R L. Geophysical evidence from the MELT area for compositional controls on oceanic plates.
Nature,2005,437(7056):249-252
|
CSCD被引
29
次
|
|
|
|
4.
Ichiki M. An overview of electrical conductivity structures of the crust and upper mantle beneath the northwestern Pacific, the Japanese Islands, and continental East Asia.
Gondwana Research,2009,16(3/4):545-562
|
CSCD被引
7
次
|
|
|
|
5.
Bai D H. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging.
Nat.Geosci,2010,3(5):358-362
|
CSCD被引
205
次
|
|
|
|
6.
Presnall D C. Changes in electrical conductivity of a synthetic basalt during melting.
J. Geophys.Res,1972,77(29):5665-5672
|
CSCD被引
12
次
|
|
|
|
7.
Tyburczy J A. Electrical conductivity of molten basalt and andesite to 25kilobars pressure:geophysical significance and implications for charge transport and melt structure.
J. Geophys.Res,1983,88(B3):2413-2430
|
CSCD被引
18
次
|
|
|
|
8.
Gaillard F. Carbonatite melts and electrical conductivity in the asthenosphere.
Science,2008,322(5906):1363-1365
|
CSCD被引
37
次
|
|
|
|
9.
Yoshino T. Electrical conductivity of partial molten carbonate peridotite.
Phys.Earth Planet. Inter,2012,194/195:1-9
|
CSCD被引
6
次
|
|
|
|
10.
黄小刚. 高温高压下矿物岩石电导率的实验研究进展.
地球物理学进展,2010,25(4):1247-1258
|
CSCD被引
10
次
|
|
|
|
11.
Karato S. The role of hydrogen in the electrical conductivity of the upper mantle.
Nature,1990,347(6290):272-273
|
CSCD被引
64
次
|
|
|
|
12.
Huang X G. Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite.
Nature,2005,434(7034):746-749
|
CSCD被引
38
次
|
|
|
|
13.
Wang D J. The effect of water on the electrical conductivity of olivine.
Nature,2006,443(7114):977-980
|
CSCD被引
34
次
|
|
|
|
14.
Yoshino T. Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere.
Nature,2006,443(5223):973-976
|
CSCD被引
34
次
|
|
|
|
15.
Yoshino T. The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle.
Earth Planet.Sci.Lett,2009,288(1/2):291-300
|
CSCD被引
29
次
|
|
|
|
16.
Dai L D. Electrical conductivity of orthopyroxene: Implications for the water content of the asthenosphere.
Proc.Jpn.Acad.,Ser.B,2009,85(10):466-475
|
CSCD被引
5
次
|
|
|
|
17.
Zhang B H. Electrical conductivity of enstatite as a function of water content:Implications for the electrical structure in the upper mantle.
Earth Planet. Sci.Lett,2012,357/358:11-20
|
CSCD被引
13
次
|
|
|
|
18.
张宝华. 1600K和20GPa温压条件下的顽火辉石电导率.
地球物理学报,2010,53(3):760-764
|
CSCD被引
4
次
|
|
|
|
19.
Marquis G. Geophysical support for aqueous fluids in the deep crust:seismic and electrical relationships.
Geophys.J.Int,1992,110(1):91-105
|
CSCD被引
17
次
|
|
|
|
20.
Shimojuku A. Electrical conductivity of fluid-bearing quartzite under lower crustal conditions.
Phys.Earth Planet.Inter,2012,198/199:1-8
|
CSCD被引
10
次
|
|
|
|
|