帮助 关于我们

返回检索结果

高分子溶液壁湍流减阻机理的TRPIV实验研究
TRPIV Experimental Investigation on Drag-Reduction Mechanism of Polymer Solution Wall Turbulence

查看参考文献20篇

蒋营营 1   管新蕾 1   姜楠 2 *  
文摘 利用高时间分辨率粒子图像测速技术(TRPIV)对回流式水槽中低浓度高分子溶液壁湍流的减阻机理进行实验研究。通过对比分析高分子溶液和纯水平板湍流边界层在相同来流速度下的平均速度剖面、湍流强度和雷诺应力,发现高分子溶液的壁面摩擦阻力减小了21.77%,并且其缓冲层增厚,按对数律外移,雷诺应力减小;高分子聚合物主要在近壁区起到抑制湍流脉动的作用,而在主流区的作用不太明显。用流向局部平均多尺度速度结构函数和相干结构条件采样方法,检测并对比了高分子溶液和水的壁湍流相干结构"喷射"和"扫掠"事件中的脉动速度、展向涡量、雷诺应力等物理量的二维拓扑形态,发现高分子溶液近壁区相干结构在猝发时的脉动速度减小,涡量受到抑制,雷诺应力明显减小,说明高分子溶液湍流近壁区相干结构"喷射"和"扫掠"的强度变弱,猝发频率降低,动量和能量的输运减弱,揭示出高分子溶液减阻的重要机理。
其他语种文摘 Experimental study of drag reduction mechanism of low concentration polymer solution wall turbulence in a regurgitant water channel was carried out by using time-resolution particle image velocimetry (TRPIV). Through comparative analysis of the average velocity profile, the turbulence intensity and Reynolds stress for flat plate turbulent boundary layer flow of both polymer solution and pure water at the same incident flow velocity, it is found that the skin friction of polymer solution is decreased 21.77%, its buffer layer is thickened and relocated by logarithmic law, its Reynolds stress is decreased in polymer solution, respectively. PAM polymers restrain the turbulence fluctuation mostly in near-wall region, in the main stream region, its role is not significant. By using local average multi-scale flow velocity structure function along flow direction and coherent structures conditional sampling method, the two-dimensional topologies of the fluctuating velocity, the spanwise velocity, Reynolds stress and other physical quantities in wall turbulence burst coherent structure "jet" and "sweep" events for both polymer solution and water were detected and compared. Results show that the fluctuating velocity in near-wall region coherent structure decreases, the vorticity is suppressed, and Reynolds stress decreases obviously, which indicate that the turbulence intensity of "jet" and "sweep" in polymer solution near-wall region decreases, burst frequency reduces, momentum and energy transport weakens. Above results reveal the important drag reduction mechanism of polymer solution.
来源 实验力学 ,2013,28(4):422-430 【核心库】
关键词 高分子溶液 ; 减阻 ; 高时间分辨率粒子图像测速 ; 壁湍流 ; 相干结构
地址

1. 天津大学力学系, 天津市现代工程力学重点实验室, 天津, 300072  

2. 天津大学力学系, 天津市现代工程力学重点实验室;;非线性力学国家重点实验室, 天津, 300072

语种 中文
文献类型 研究性论文
ISSN 1001-4888
学科 力学
基金 国家973计划 ;  国家自然科学基金资助项目 ;  中国科学院力学研究所非线性力学国家重点实验室对外开放课题联合资助
文献收藏号 CSCD:4968787

参考文献 共 20 共1页

1.  罗兴. 减阻技术在集中供热与空调水输配系统中的应用. 节能,2004,12:14-15 CSCD被引 1    
2.  朱蒙生. 添加剂黏性减阻在暖通空调系统中的应用. 煤气与热力,2008,28:24-26 CSCD被引 1    
3.  Toms B A. Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. Proceeding of First International Congress on Rheology,1948:135-138 CSCD被引 2    
4.  Virk P S. Drag reduction fundamentals. AIChE Journal,1975,21:625-656 CSCD被引 44    
5.  Lumley J L. Drag reduction in turbulent flow by polymer additives. J. Polymer Sci. Macromol. Rev,1973,7:263-290 CSCD被引 12    
6.  Degennes P G. Introduction to Polymer Dynamics,1990 CSCD被引 2    
7.  Joseph D D. Fluid Dynamics of Viscoelastic Liquids,1990 CSCD被引 6    
8.  Rabin Y. Scale-development enhancement and damping of vorticity disturbance by polymers in elongational flow. Phy.Rev. Lett,1989,63:512-518 CSCD被引 7    
9.  Den Toonder J M J. Drag reduction by polymer additives in a turbulent pipe flow: numerical and laboratory experiments. Journal of Fluid Mechanics,1997,337:193-231 CSCD被引 14    
10.  Mccomb W D. Laser-Doppler measurements of turbulent structure. AIChE Journal,1982,28:558-565 CSCD被引 2    
11.  Donohue G L. Flow visualization of the near-wallregion in a drag-reducing channel flow. Journal of Fluid Mechanics,1972,56:559-575 CSCD被引 2    
12.  Kim K. Effects of polymer stresses on eddy structures in dragreduced turbulent channel flow. Journal of Fluid Mechanics,2007,584:281-299 CSCD被引 4    
13.  田军. 粘性减阻技术及其应用. 实验力学,1997,12(2):198-203 CSCD被引 8    
14.  樊星. 用平均速度剖面法测量壁湍流摩擦阻力. 力学与实践,2005,27:28-29 CSCD被引 15    
15.  Harder K J. Drag reduction and turbulent structure in two-dimensional channel flows. Philosophical Transactions of the Royal Society,1991,336(A):19-34 CSCD被引 2    
16.  Masaaki M. Experimental investigation on turbulent structure of drag reducing channel flow with blowing polymer solution from the wall. Flow Turbulence Combust,2012,88:121-141 CSCD被引 2    
17.  邵雪明. 添加聚合物对混合层流场特性影响的实验研究. 实验力学,1998,13(4):520-525 CSCD被引 4    
18.  Jia Yongxia. Experimental investigation of Reynolds stress complex eddy viscosity model for coherent structure dynamics. Science China Physics, Mechanics & Astronomy,2011,54(7):1319-1327 CSCD被引 8    
19.  Yang Shaoqiong. Tomographic TR-PIV measurement of coherent structure spatial topology utilizing an improved quadrant splitting method. Sci China-Phy Mech Astron,2012,55:1863-1872 CSCD被引 18    
20.  姜楠. 雷诺应力各向异性涡黏模型的层析TRPIV测量. 力学学报,2012,44(2):213-221 CSCD被引 8    
引证文献 3

1 成璐 壁面湍流发卡涡包空间模态的TRPIV实验研究 实验力学,2015,30(1):51-58
CSCD被引 1

2 任刘珍 管道内均匀与非均匀PEO溶液湍流减阻特性研究 实验力学,2019,34(2):217-223
CSCD被引 3

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号