小波分析方法在水文学研究中的应用现状及展望
Applications of wavelet analysis to hydrology: Status and prospects
查看参考文献58篇
文摘
|
本文首先介绍了小波分析的基本方法,主要包括小波函数、小波变换和小波消噪等。然后从6个方面,即基于连续小波变换的水文序列多时间尺度变化特性分析、基于离散小波变换的水文序列分解和重构、水文过程复杂性定量描述、水文序列小波消噪、水文序列小波互相关分析和基于小波方法的水文序列模拟预报技术,综述了小波分析方法在水文学各领域的研究应用现状和主要不足,以及存在的关键和难点问题。最后,对小波分析方法在今后的水文学研究中的应用进行了展望,并就小波函数选择、小波阈值消噪、小波分解、小波互相关分析、水文序列小波预报等具体问题提出了建议。 |
其他语种文摘
|
In this paper, wavelet analysis methods, mainly including wavelet basis function, continuous and discrete wavelet transform and wavelet threshold de-noising, were introduced first. Then, current researches and applications of the wavelet analysis methods to various aspects of hydrology were summarized and reviewed from three points of view: research significance, current researches and applications, and key and difficult problems and the inadequate applications to hydrology. The six aspects of wavelet-based hydrologic analysis include: continuous wavelet-based analysis of hydrologic time series' characteristics under multi-temporal scales, discrete wavelet decomposition and reconstruction different sub-signals of hydrologic time series, quantification of complicated variability of hydrologic processes, wavelet de-noising in hydrologic time series, wavelet cross-correlation analysis of hydrologic time series, and wavelet-based hydrologic time series simulation and forecasting. Finally, several suggestions and opinions on the future researches and applications of wavelet analysis methods in hydrology were discussed. They focus on selection of wavelet basis function, wavelet threshold de-noising, wavelet decomposition, wavelet cross-correlation analysis, and wavelet aided forecasting. |
来源
|
地理科学进展
,2013,32(9):1413-1422 【核心库】
|
关键词
|
水文时间序列分析
;
小波分析
;
水文预报
;
水文水资源
;
不确定性
|
地址
|
中国科学院地理科学与资源研究所, 中国科学院陆地水循环与地表过程重点实验室, 北京, 100101
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1007-6301 |
学科
|
自然地理学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:4951755
|
参考文献 共
58
共3页
|
1.
Almasria A. Testing for climate warming in Sweden during 1850-1999: Using wavelets analysis.
Journal of Applied Statistics,2008,35(4):431-443
|
CSCD被引
1
次
|
|
|
|
2.
Berger J. Removing noise from music using local trigonometric bases and wavelet packets.
Journal of the Audio Engineering Society,1994,42(10):808-818
|
CSCD被引
1
次
|
|
|
|
3.
Bruni V. Wavelet-based signal de-noising via simple singularities approximation.
Signal Processing,2006,86(4):859-876
|
CSCD被引
5
次
|
|
|
|
4.
Chanerley A A. Correcting data from an unknown accelerometer using recursive least squares and wavelet de-noising.
Computer & Structure,2007,85(21/22):1679-1692
|
CSCD被引
3
次
|
|
|
|
5.
Chui C K.
An introduction to wavelets (Vol. 1),1992
|
CSCD被引
1
次
|
|
|
|
6.
Coifman R. Entropy based algorithms for best basis selection.
IEEE Transactions on Information Theory,1992,38(2):713-718
|
CSCD被引
210
次
|
|
|
|
7.
Coulibaly P. Wavelet analysis of variability in annual Canadian streamflows.
Water Resources Research,2004,40(3):W03105
|
CSCD被引
7
次
|
|
|
|
8.
Coulibaly P. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach.
Journal of Hydrology,2000,230(3/4):244-257
|
CSCD被引
13
次
|
|
|
|
9.
D'Astous F. Analyzing environmental time series.
Journal of the Environmental Engineering Division,1979,105(5):979-992
|
CSCD被引
2
次
|
|
|
|
10.
Dimoulas C. Novel wavelet domain Wiener filtering de-noising techniques: Application to bowel sounds captured by means of abdominal surface vibrations.
Biomed. Signal Processing and Control,2006,1(3):177-218
|
CSCD被引
1
次
|
|
|
|
11.
Donoho D H. De-noising by soft-thresholding.
IEEE Transactions on Information Theory,1995,41(3):613-617
|
CSCD被引
1796
次
|
|
|
|
12.
Elshorbagy A. Noise reduction in chaotic hydrologic time series: facts and doubts.
Journal of Hydrology,2002,256(3):147-165
|
CSCD被引
13
次
|
|
|
|
13.
Foufoula-Georgiou E.
Wavelets in geophysics,1994
|
CSCD被引
13
次
|
|
|
|
14.
Gallegati M. Wavelet analysis of stock returns and aggregate economic activity.
Computational Statistics & Data Analysis,2008,52(6):3061-3074
|
CSCD被引
3
次
|
|
|
|
15.
Jach A. Wavelet-domain test for long-range dependence in the presence of a trend.
Statistics,2008,42(2):101-113
|
CSCD被引
1
次
|
|
|
|
16.
Kim T W. Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks.
Journal of Hydrologic Engineering,2003,8(6):319-328
|
CSCD被引
3
次
|
|
|
|
17.
Kisi O. River flow forecasting and estimation using different artificial neural network techniques.
Hydrology Research,2008,39(1):27-40
|
CSCD被引
3
次
|
|
|
|
18.
Kisi O. Wavelet regression model as an alternative to neural networks for monthly streamflow forecasting.
Hydrological Processes,2009,23(25):3583-3597
|
CSCD被引
3
次
|
|
|
|
19.
Kisi O. Neural network and wavelet conjunction model for modeling monthly level fluctuations in Turkey.
Hydrological Processes,2009,23(14):2081-2092
|
CSCD被引
1
次
|
|
|
|
20.
Kumar P. Wavelet analysis for geophysical applications.
Reviews of Geophysics,1997,35(4):385-412
|
CSCD被引
38
次
|
|
|
|
|