叶面积指数遥感反演研究进展与展望
Current Status and Perspectives of Leaf Area Index Retrieval from Optical Remote Sensing Data
查看参考文献47篇
文摘
|
叶面积指数表征叶片的疏密程度和冠层结构特征,体现植被光合、呼吸和蒸腾作用等生物物理过程的能力,是描述土壤-植被-大气之间物质和能量交换的关键参数。目前多种卫星传感器观测生成了多个区域和全球的叶面积指数标准产品。本文综述了基于光学遥感数据的叶面积指数反演进展:首先,介绍了叶面积指数的定义和在生态系统模拟中的作用;然后,阐述了基于光学遥感反演叶面积指数的基本原理;在此基础上,论述了基于植被指数经验关系和基于物理模型的两种主要遥感反演算法,讨论了2种算法的优点和存在的问题,并总结了现有的主要全球数据产品及其特点,论述了产品检验的方法和需要注意的问题;最后,总结了当前叶面积指数反演中存在的问题,并展望了其发展趋势和研究方向。 |
其他语种文摘
|
Leaf area index (LAI) is a primary parameter for charactering leaf density and vegetation structure. Since it could represent the capability of vegetation for photosynthesis, respiration and transpiration, LAI is used as a critical parameter for modeling water, carbon and energy exchanges among soil, vegetation and the atmosphere. Several regional and global LAI datasets have been generated from satellite observations. This paper reviews current status of theoretical background, algorithms, products and evaluation of LAI from optical remote sensing data. First, the definition of LAI and its effects in ecosystem modeling are introduced. Then, the radiative transfer processes of photon in canopy are described briefly. Based on these processes, vegetation presents its own spectral response characteristics, which are related to biophysical and biochemical properties of leaves, canopy and soil background, making it possible to derive LAI from optical remote sensing data. Two main methods which establish the relationships between LAI and satellite observed spectral canopy reflectance are widely used for LAI retrieval from remote sensing data, including vegetation index-based empirical regression method and physical model-based method. These two methods are presented subsequently, and their advantages and disadvantages are also discussed. Several major global LAI remote sensing products are reviewed, such as MOD15, CYCLOPES, GLOBCARBON and GLOBMAP LAI. The methods for LAI products evaluation and validation are presented, and several problems in LAI evaluation are also discussed. Finally, several problems in LAI retrieval are concluded, and directions for future research of LAI retrieval are then suggested. |
来源
|
地球信息科学学报
,2013,15(5):734-743 【核心库】
|
关键词
|
植被
;
叶面积指数
;
遥感反演
;
数据产品
|
地址
|
1.
北京师范大学全球变化与地球系统科学研究院, 遥感科学国家重点实验室, 北京, 100875
2.
中国科学院地理科学与资源研究所, 北京, 100101
3.
南京大学国际地球系统科学研究所, 南京, 210093
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1560-8999 |
学科
|
地球物理学 |
基金
|
国家973计划
;
公益性行业(气象)科研专项
;
博士后面上基金项目
|
文献收藏号
|
CSCD:4945939
|
参考文献 共
47
共3页
|
1.
Ganopolski A. The influence of vegetation-atmosphere-ocean interaction on climate during the mid-Holocene.
Science,1998,280(5371):1916-1919
|
CSCD被引
20
次
|
|
|
|
2.
Watson D J. Comparative physiological studies in the growth of field crops. I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years.
Annals of Botany,1947,11(41):41-76
|
CSCD被引
62
次
|
|
|
|
3.
Monteith J L.
Principles of Environmental Physics (2nd Edition),1973
|
CSCD被引
2
次
|
|
|
|
4.
Smith N J. Estimating salad leaf area index and leaf biomass from diffuse light attenuation.
Canadian Journal of Forest Research,1990,20(9):1265-1270
|
CSCD被引
2
次
|
|
|
|
5.
Chen J M. Defining Leaf-Area Index for non-flat leaves.
Plant Cell and Environment,1992,15(4):421-429
|
CSCD被引
215
次
|
|
|
|
6.
Chen J M. Global mapping of foliage clumping index using multi-angular satellite data.
Remote Sensing of Environment,2005,97(4):447-457
|
CSCD被引
42
次
|
|
|
|
7.
Myneni R B. A review on the theory of photon transport in leaf canopies.
Agricultural and Forest Meteorology,1989,45(1/2):1-153
|
CSCD被引
26
次
|
|
|
|
8.
Arora V. Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models.
Reviews of Geophysics,2002,40(2):1-26
|
CSCD被引
21
次
|
|
|
|
9.
Sellers P J. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere.
Science,1997,275(5299):502-509
|
CSCD被引
118
次
|
|
|
|
10.
Zhao M. Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009.
Science,2010,329(5994):940-943
|
CSCD被引
100
次
|
|
|
|
11.
Leuning R. A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation.
Water Resources Research,2008,44(10):1-17
|
CSCD被引
7
次
|
|
|
|
12.
Peterson D L. Remote sensing of forest canopy and leaf biochemical contents.
Remote Sensing of Environment,1988,24(1):85-108
|
CSCD被引
18
次
|
|
|
|
13.
Liang S L.
Quantitative remote sensing of land surface,2004:93-100
|
CSCD被引
1
次
|
|
|
|
14.
Nilson T. A forest canopy reflectance model and a test case.
Remote Sensing of Environment,1991,37(2):131-142
|
CSCD被引
7
次
|
|
|
|
15.
Masson V. A global database of land surface parameters at 1-km resolution in meteorological and climate models.
Journal of Climatology,2003,16(9):1261-1282
|
CSCD被引
3
次
|
|
|
|
16.
Chen J M. Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements.
Remote Sensing of Environment,2002,80(1):165-184
|
CSCD被引
83
次
|
|
|
|
17.
Houborg R. Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data.
Remote Sensing of Environment,2007,106(1):39-58
|
CSCD被引
29
次
|
|
|
|
18.
Chen J M. Evaluation of vegetation indices and a modified simple ratio for boreal applications.
Canadian Journal of Remote Sensing,1996(22):229-242
|
CSCD被引
2
次
|
|
|
|
19.
Jacquemoud S. PROSPECT-a model of leaf optical-properties spectra.
Remote Sensing of Environment,1990,34(2):75-91
|
CSCD被引
186
次
|
|
|
|
20.
Dawson T P. LIBERTY-Modeling the effects of leaf biochemical concentration on reflectance spectra.
Remote Sensing of Environment,1998,65(1):50-60
|
CSCD被引
37
次
|
|
|
|
|