城市碳基能源代谢分析框架及核算体系
An analytical framework and indicator system of urban carbon-based energy metabolism
查看参考文献36篇
文摘
|
城市碳基能源代谢是当前应对全球气候变化与资源耗竭研究的重要突破口。针对碳排放研究在城市尺度核算的薄弱环节,以及城市代谢研究在社会经济子系统碳基能源转移分析上的缺陷,文章基于碳足迹与城市代谢阐释城市碳基能源代谢的内涵,界定其核算范畴与边界,构建城市复合生态系统碳基能源四种范畴不同代谢过程的核算方法体系。以北京市为案例,阐明三种核算方法的特点。研究认为,城市碳基能源代谢是对城市社会经济发展过程中资源利用与环境协调发展量度的一组低碳生态城市指标体系;不同碳基能源代谢核算方法各具特色,应根据数据可得性与研究目标针对性进行选择,以增加研究结果之间的规范性与可比性;不同范畴界定下的碳基能源代谢核算可以根据生产、消费及共担责任原则处理碳减排的责任问题;中国的城市碳基能源代谢实质是一种城市区域碳基能源代谢,三种核算方法从不同视角与层面揭示城市碳基能源代谢特点,三者结合能全面分析产业与能源结构调整、居民生活方式变化对低碳生态城市发展的作用路径与规律;城市部门结构(产业、居民)与技术结构变化的碳基能源代谢响应是进一步研究的重点。 |
其他语种文摘
|
It is crucial to assess carbon-based energy use and related carbon emissions to assign responsibility for emissions reductions. Previous studies have scantly documented urban carbon emissions and addressed carbon-based energy transfer in socio-economic subsystems. Therefore, this study aims to build a framework and indicator system of urban carbon-based energy metabolism to standardize the accounting methods on fossil-energy related carbon emissions. The framework explains the connotation of urban carbon-based energy metabolism and defines its accounting scope and boundary based on "carbon footprint" and "urban metabolism". The indicator system exhibits the input, conversion, transfer and output process of carbon-based energy for urban complex ecosystems with different spatial boundaries. The research suggests that urban carbon-based energy metabolism can be used to analyze the coordination between resource and environment for low-carbon eco-cites in process of urban socio-economic development. Secondly, three accounting methods use different benchmarks to estimate urban energy use and carbon emissions. In order to raise comparability between research results, we use the method to select the available data and the targeted research objectives. Thirdly, carbon reductions should be allocated based on production, consumption and/or shared responsibility by different accounting methods. In essence, urban carbon-based energy metabolism in China is one kind of city-region related metabolism. From perspective of the industrial and energy restructuring and the residential lifestyle changes, the combination of three comprehensive methods can reveal the evolutionary mechanism and pattern of urban carbon-based energy. This research has developed systematic accounting methods to measure urban sectoral carbon emissions. Furthermore, responses to technology structure changes are needed to understand the future change scenarios of energy use and carbon emissions. |
来源
|
地理学报
,2013,68(8):1048-1058 【核心库】
|
关键词
|
复合生态系统
;
城市代谢
;
碳基能源
;
核算方法
|
地址
|
河南大学黄河文明与可持续发展研究中心,环境与规划学院, 黄河中下游数字地理技术教育部重点实验室, 开封, 475004
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
基金
|
国家自然科学基金项目
;
国家973计划
;
国家教育部人文社会科学重点研究基地基金
|
文献收藏号
|
CSCD:4936314
|
参考文献 共
36
共2页
|
1.
Grimm N. Global change and the ecology of cities.
Science,2008,319(5864):756-760
|
CSCD被引
431
次
|
|
|
|
2.
Dhakal S. Bridging the research gaps for carbon emissions and their management in cities.
Energy Policy,2010,38(9):4753-4755
|
CSCD被引
1
次
|
|
|
|
3.
ICLEI. Local Governments for Sustainability.
Cities for Climate Protection Participants,2009
|
CSCD被引
2
次
|
|
|
|
4.
Dhakal S. Urban energy use and carbon emissions from cities in China and policy implications.
Energy Policy,2009,37(11):4208-4219
|
CSCD被引
53
次
|
|
|
|
5.
Glaeser E L. The greenness of cities: Carbon dioxide emissions and urban development.
Journal of Urban Economics,2010,67(3):404-418
|
CSCD被引
47
次
|
|
|
|
6.
Parshall L. Modeling energy consumption and CO_2 emissions at the urban scale: Methodological challenges and insights from the United States.
Energy Policy,2010,38(9):4765-4782
|
CSCD被引
10
次
|
|
|
|
7.
Wiedmann T. A definition of "Carbon Footprint".
Ecological Economics Research Trends,2007
|
CSCD被引
3
次
|
|
|
|
8.
Sovacool B K. Twelve metropolitan carbon footprints: A preliminary comparative global assessment.
Energy Policy,2010,38(9):4856-4869
|
CSCD被引
52
次
|
|
|
|
9.
Bin S. Consumer lifestyle approach to US energy use and the related CO_2 emissions.
Energy Policy,2005,33(2):197-208
|
CSCD被引
55
次
|
|
|
|
10.
Larsen H N. Identifying important characteristics of municipal carbon footprints.
Ecological Economics,2010,70(1):60-66
|
CSCD被引
1
次
|
|
|
|
11.
Huang Y A. The role of input-output analysis for the screening of corporate carbon footprints.
Economic Systems Research,2009,21(3):217-242
|
CSCD被引
7
次
|
|
|
|
12.
Erickson P. A consumption-based GHG inventory for the U.S. State of Oregon.
Environmental science & technology,2012,46(7):3679-3686
|
CSCD被引
2
次
|
|
|
|
13.
Chavez A. Articulating a trans-boundary infrastructure supply chain greenhouse gas emission footprint for cities: Mathematical relationships and policy relevance.
Energy Policy,2013,54(3):376-384
|
CSCD被引
3
次
|
|
|
|
14.
Wolman A. The metabolism of the city.
Scientific American,1965,213(6):179-190
|
CSCD被引
86
次
|
|
|
|
15.
Kennedy C. The changing metabolism of cities.
Journal of Industrial Ecology,2007,11(2):43-59
|
CSCD被引
27
次
|
|
|
|
16.
Pincetl S. An expanded urban metabolism method: Toward a systems approach for assessing urban energy processes and causes.
Landscape and Urban Planning,2012,107(3):193-202
|
CSCD被引
4
次
|
|
|
|
17.
Ramaswami A. Carbon footprinting of cities and implications for analysis of urban material and energy flows.
Journal of Industrial Ecology,2012,16(6):783-785
|
CSCD被引
2
次
|
|
|
|
18.
Folke C. Ecosystem appropriation by cities.
Ambio,1997,26(3):167-172
|
CSCD被引
30
次
|
|
|
|
19.
Agostinho F. Support area as an indicator of environmental load: Comparison between Embodied Energy, Ecological Footprint, and Emergy Accounting methods.
Ecological Indicators,2013,24(1):494-503
|
CSCD被引
9
次
|
|
|
|
20.
Kennedy S. Rigorous classification and carbon accounting principles for low and Zero Carbon Cities.
Energy Policy,2011,39(9):5259-5268
|
CSCD被引
3
次
|
|
|
|
|