扩展弹道成型末制导律特性分析与应用研究
Analysis and Application Study on the Extended Trajectory Shaping Guidance Law
查看参考文献12篇
文摘
|
基于剩余飞行时间的指数函数构建了扩展的权函数和目标函数,引入常值机动目标,利用最优控制理论,扩展得到最优弹道成型制导律簇。针对无制导动力学滞后的制导系统,利用施瓦茨不等式,求解得到了在初始位置误差、方向误差、目标常值机动及终端落角约束作用下的制导律加速度指令解析解。分析指出,当罚函数中剩余飞行时间的指数大于0时,加速度指令在弹道末端趋近于0.利用无量纲化方法和伴随法,研究了含有一阶动力学滞后的制导系统在初始方向误差和终端落角约束作用下的无量纲位置和角度脱靶量特性。结果表明:当末导时间为制导系统动力学滞后时间常数的15倍左右时,落角约束、初始方向误差引起的位置和角度脱靶量均趋近于0;且初始方向误差角和终端落角方向相反时的位置和角度脱靶量要小于二者同号时的情况。 |
其他语种文摘
|
The extended weighted and object functions are proposed based on the time-to-go exponential function. The optimal control theory is used to deduce a family of extended optimal trajectory shaping guidance laws for the constant maneuvering target. According to Schwartz inequality, the analytical solution of the guidance law acceleration command is derived by introducing the initial displacement, initial heading error, target maneuver and final impact angle into the lag-free guidance system. The analysis shows that the final acceleration command approaches to zero when the exponent of the time-to-go exponential function is greater than zero. The non-dimensional position and angle miss distance of guidance system with first order lag are studied using the non-dimensional method and the adjoint method. The results show that the position and angle miss distance induced by the heading error and final impact angle approach to zero when the missile terminal guidance time is about 15 times of the system lag time constant. And also, the position and angle miss-distance are smaller when the signs of initial heading error angle and final impact angle are opposite. |
来源
|
兵工学报
,2013,34(7):801-809 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2013.07.001
|
关键词
|
飞行器控制、导航技术
;
扩展弹道成型
;
剩余飞行时间
;
最优控制
;
施瓦茨不等式
;
脱靶量
|
地址
|
1.
北京航空航天大学航空科学与工程学院, 北京, 100191
2.
北京理工大学宇航学院, 北京, 100081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
武器工业 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:4933866
|
参考文献 共
12
共1页
|
1.
Ohlmeyer E J. Generalized vector explicit guidance.
Journal of Guidance, Control, and Dynamics,2006,29(2):261-268
|
CSCD被引
38
次
|
|
|
|
2.
Zarchan P.
Tactical and strategic missile guidance. (5th ed),2007:31-50, 541-569
|
CSCD被引
1
次
|
|
|
|
3.
Ben-Asher J Z. Optimal guidance with reduced sensitivity to time-to-go estimation errors.
Journal of Guidance, Control, and Dynamics,1997,20(1):158-163
|
CSCD被引
9
次
|
|
|
|
4.
Ben-Asher J Z.
Advances in missile guidance theory,1998
|
CSCD被引
7
次
|
|
|
|
5.
Ryoo C K. Optimal guidance laws with terminal impact angle constraint.
Journal of Guidance, Control, and Dynamics,2005,28(4):724-732
|
CSCD被引
108
次
|
|
|
|
6.
Ryoo C K. Time-to-go weighted optimal guidance with impact angle constraints.
IEEE Transactions on Control Systems Technology,2006,14(3):483-492
|
CSCD被引
95
次
|
|
|
|
7.
Ryoo C K. Closed-form solutions of optimal guidance with terminal impact angle constraint.
IEEE International Conference on Control Application,2003:504-509
|
CSCD被引
1
次
|
|
|
|
8.
Wang H. Time-to-go weighted optimal trajectory shaping guidance law.
Transactions of Beijing Institute of Technology,2011,20(3):317-323
|
CSCD被引
2
次
|
|
|
|
9.
常超. 带落点和落角约束的最优末制导律研究.
北京理工大学学报,2009,29(3):233-239
|
CSCD被引
17
次
|
|
|
|
10.
刘大卫. 具有终端位置和角度约束的广义弹道成型制导律.
北京理工大学学报,2011,31(12):1408-1413
|
CSCD被引
12
次
|
|
|
|
11.
Lukacs J A. Trajectory-shape-varying missile guidance for interception of ballistic missiles during the boost phase.
AIAA Guidance, Navigation and Control Conference and Exhibit. 2007-6538,2007
|
CSCD被引
1
次
|
|
|
|
12.
Garnell P.
Guided weapon control systems,2003:297-364
|
CSCD被引
6
次
|
|
|
|
|