Growth of a cup-stacked carbon nanotube carpet with a superhydrophobic surface
超疏水叠杯状碳纳米管薄膜的制备
查看参考文献24篇
文摘
|
A carpet structure composed of high purity cup-stacked carbon nanotubes (CSCNTs) was synthesized by a catalytic chemical vapor deposition method. In a 15-min growth time, the CSCNT carpet with a height up to ~300 μm and carbon purity above 99.9 mass% was prepared. Transmission electron microscopy observations indicated that the CSCNTs with diameters ranging from 80 nm to 230 nm consist of truncated conical graphene layers. Based on the experimental results, a possible "base growth" mechanism was proposed for the CSCNTs. The CSCNT carpet is highly flexible and superhydrophobic, showing a contact angle of ~155°. It can be easily harvested from the original growth substrate and be transferred to target substrates. It may therefore find applications as a water-proof and self-cleaning coating layer. |
其他语种文摘
|
采用化学气相沉积法制备了高纯度的叠杯状碳纳米管薄膜。生长15min后,薄膜厚度可达~300μm。热重分析表明薄膜的纯度高达99.9%。透射电镜表征表明碳纳米管中石墨烯片层与轴向存在一定偏角呈叠杯状排列,其直径为80nm~230nm。通过对催化剂与叠杯状碳纳米管的结构分析,提出其根部生长机制。该叠杯状碳纳米管薄膜易于转移且具有良好的柔性。疏水性测试表明其具有超疏水表面,接触角约为155°,因而有望作为防水和自清洁保护层。 |
来源
|
新型炭材料
,2013,28(4):295-299 【核心库】
|
DOI
|
10.1016/s1872-5805(13)60083-9
|
关键词
|
Cup-stacked carbon nanotubes
;
Carpet
;
Superhydrophobic
|
地址
|
Institute of Metal Research, Chinese Academy of Sciences, Shenyang National Laboratory for Materials Science, Shenyang, 110016
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1007-8827 |
学科
|
一般工业技术 |
基金
|
国家自然科学基金
;
科技部重大科学研究计划项目
|
文献收藏号
|
CSCD:4931737
|
参考文献 共
24
共2页
|
1.
Li S S. Vertically aligned carbon nanotubes grown on graphene paper as electrodes in Lithium-Ion batteries and Dye-Sensitized solar cells.
Adv Energy Mater,2011,1:486-490
|
CSCD被引
19
次
|
|
|
|
2.
Gong K P. Nitrogen-Doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction.
Science,2009,323:760-764
|
CSCD被引
434
次
|
|
|
|
3.
Zhang R F. Superstrong ultra long carbon nanotubes for mechanical energy storage.
Adv Mater,2011,23:3387-3391
|
CSCD被引
24
次
|
|
|
|
4.
Durkop T. Extraordinary mobility in semiconducting carbon nanotubes.
Nano Lett,2004,4:35-39
|
CSCD被引
50
次
|
|
|
|
5.
Liu K. Scratch-Resistant, highly conductive, and High-Strength carbon Nanotube-Based composite yarns.
ACS,2010,4:5827-5834
|
CSCD被引
1
次
|
|
|
|
6.
Endo M. Structural characterization of cup-stacked-type nanofibers with an entirely hollow core.
Appl Phys Lett,2002,80:1267-1269
|
CSCD被引
9
次
|
|
|
|
7.
Saito K. Electron-transfer reduction of cup-stacked carbon nanotubes affording cup-shaped carbons with controlled diameter and size.
J Am Chem Soc,2006,128:14216-14217
|
CSCD被引
2
次
|
|
|
|
8.
Takahashi K. Experimental and numerical studies on ballistic phonon transport of cup-stacked carbon nanofiber.
Physica B,2009,404:2431-2434
|
CSCD被引
1
次
|
|
|
|
9.
Liu Q F. Semiconducting properties of cup-stacked carbon nanotubes.
Carbon,2009,47:731-736
|
CSCD被引
1
次
|
|
|
|
10.
Endo M. Selective and efficient impregnation of metal nanoparticles on cup-stacked-type carbon nanofibers.
Nano Lett,2003,3:723-726
|
CSCD被引
6
次
|
|
|
|
11.
Li W Z. Platinum nanopaticles supported on stacked-cup carbon nanofibers as electrocatalysts for proton exchange membrane fuel cell.
Carbon,2010,48:995-1003
|
CSCD被引
1
次
|
|
|
|
12.
Kim C. High performance of cup-stacked-type carbon nanotubes as a Pt-Ru catalyst support for fuel cell applications.
J Appl Phys,2004,96:5903-5905
|
CSCD被引
4
次
|
|
|
|
13.
Farrow B. CdSe quantum dot sensitized solar cells. Shuttling electrons through stacked carbon nanocups.
J Am Chem Soc,2009,131:11124-11131
|
CSCD被引
10
次
|
|
|
|
14.
Choi Y K. Processing and characterization of epoxy nanocomposites reinforced by cup-stacked carbon nanotubes.
Polymer,2005,46:11489-11498
|
CSCD被引
1
次
|
|
|
|
15.
Yokozeki T. Mechanical properties of CFRP laminates manufactured from unidirectional prepregs using CSCNT-dispersed epoxy.
Compos Part a-Appl S,2007,38:2121-2130
|
CSCD被引
2
次
|
|
|
|
16.
Noda T. Nano-Molar level hydrogen peroxide detection by horseradish peroxidase adsorbed Cup-Stacked carbon nanotube electrodes and applications to L-Glutamate detection.
Anal Sci,2010,26:675-679
|
CSCD被引
1
次
|
|
|
|
17.
Zhong D Y. Lithium storage in polymerized carbon nitride nanobells.
Appl Phys Lett,2001,79:3500-3502
|
CSCD被引
8
次
|
|
|
|
18.
Rosolen J M. Carbon nanotube/felt composite electrodes without polymer binders.
J Power Sources,2006,162:620-628
|
CSCD被引
1
次
|
|
|
|
19.
Liu Q F. Synthesis, purification and opening of short Cup-Stacked carbon nanotubes.
J Nanosci Nanotechno,2009,9:4554-4560
|
CSCD被引
1
次
|
|
|
|
20.
Li S S. Wall-Number selective growth of vertically aligned carbon nanotubes from FePt catalyst: A comparative study with Fe catalyst.
J Mater Chem,2012,22:14149-14154
|
CSCD被引
1
次
|
|
|
|
|