|
高分辨像的解卷处理用于S-Al_2 CuMg相及孪晶界面结构确定
Revisit the crystal structure of S-Al_2 CuMg phase and determination of twin-boundary plane: high-resolution transmission electron microscopy and image deconvolution
查看参考文献12篇
文摘
|
S-Al_2 CuMg相是Al-Cu-Mg合金中重要的强化相,但它的晶体学结构还存在争议。利用高分辨电子显微学和像的解卷处理技术,获得了Al-Cu-Mg合金中S-Al_2 CuMg相在[100],[010]和[001]的原子投影图,进而验证PW模型是S相正确的结构模型。另外,将动力学校正引入到S相孪晶图像的处理过程,确定了S相孪晶面的位置。像解卷处理方法首次应用于金属材料并确定了S相缺陷结构,说明该方法适用于金属材料。通过解卷处理方法可以使原本不直接对应所观察材料的高分辨晶格像转变成点分辨率达到电镜的信息分辨极限的结构像。 |
其他语种文摘
|
S-Al_2 CuMg phase is one of the important strengthening phases in Al-Cu-Mg alloys, but its crystal structure remains controversial. The PW model was indentified to be the right structure model for the S-Al_2 CuMg phase in Al-Cu-Mg alloys based on the obtained atomic projections along [100], [010] and [001] zone axes by using high-resolution TEM (HRTEM) and image deconvlution method.,. The habit plane of twin boundary in the S phase was also determined using this method with consideration of the diffraction dynamics. Image deconvolution was applied to solve complex structures /defects for the first time in metallic material and confirmed successfully the defect structure of S phase. The experimental lattice images that do not show directly the atomic structure / projection of the examined samples can be transformed into structure maps by deconvolution processing with the structure resolution enhanced up to the information limit of the microscope. |
来源
|
电子显微学报
,2013,32(4):301-307 【核心库】
|
关键词
|
S-Al_2 CuMg
;
铝合金
;
孪晶
;
解卷
;
信息分辨率
|
地址
|
中国科学院金属研究所, 辽宁, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-6281 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
;
国家973计划
|
文献收藏号
|
CSCD:4924004
|
参考文献 共
12
共1页
|
1.
Li F H. Pseudo-weak-phase-object approximation in high-resolution electron microscopy. I. Theory.
Acta Crystallogr. A,1985,41:376
|
CSCD被引
12
次
|
|
|
|
2.
Wang S C. Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li) based alloys.
Inter Mater Rev,2005,4:193
|
CSCD被引
105
次
|
|
|
|
3.
Weirich T.
Electron Crystallography,2006:259
|
CSCD被引
1
次
|
|
|
|
4.
Li F H. Developing image-contrast theory and analysis methods in high-resolution electron microscopy.
Physica Status Solidi (a),2010,207:2639
|
CSCD被引
2
次
|
|
|
|
5.
Tang C Y. Image deconvolution in spherical aberration-corrected highresolution transmission electron microscopy.
Ultramicroscopy,2006,106(6):539
|
CSCD被引
4
次
|
|
|
|
6.
Wang D. Determination of a misfit dislocation complex in SiGe /Si heterostructures by image deconvolution technique in HREM.
Ultramicroscopy,2004,98:259
|
CSCD被引
6
次
|
|
|
|
7.
Cui Y X. Ultramicroscopy determining polarity and dislocation core structures at atomic level for epitaxial AlN /(0001) 6H-SiC from a single image in HRTEM.
Ultramicroscopy,2012,126:77
|
CSCD被引
1
次
|
|
|
|
8.
Wang D. Atomic configuration in core structure of Lomer dislocation in Si_(0.76) Ge_(0.24) /S.
Ultramicroscopy,2002,93:139
|
CSCD被引
6
次
|
|
|
|
9.
Tang C Y. Image deconvolution in spherical aberration-corrected fieldemission HRTEM images.
Ultramicroscopy,2006,106:539
|
CSCD被引
4
次
|
|
|
|
10.
Wang H B. Field-emission high-resolution electron microscope image processing for GaN.
Acta Metall Sin,2002,38:589
|
CSCD被引
1
次
|
|
|
|
11.
Wan W. A study on the stacking fault in GaN crystals by high-resolution electron microscope imaging.
Acta Physica Sin,2005,54(9):4273
|
CSCD被引
1
次
|
|
|
|
12.
林芳.
REW高分辨模拟软件
|
CSCD被引
1
次
|
|
|
|
|
|