An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants
查看参考文献27篇
文摘
Abscisic acid (ABA) is the most important hormone for plants to resist drought and other abiotic stresses. ABA binds directly to the PYR/PYL family of ABA receptors, resulting in inhibition of type 2C phosphatases (PP2C) and activation of downstream ABA signaling. It is envisioned that intervention of ABA signaling by small molecules could help plants to overcome abiotic stresses such as drought, cold and soil salinity. However, chemical instability and rapid catabolism by plant enzymes limit the practical application of ABA itself. Here we report the identification of a small molecule ABA mimic (AM1) that acts as a potent activator of multiple members of the family of ABA receptors. In Arabidopsis, AM1 activates a gene network that is highly similar to that induced by ABA. Treatments with AM1 inhibit seed germination, prevent leaf water loss, and promote drought resistance. We solved the crystal structure of AM1 in complex with the PYL2 ABA receptor and the HAB1 PP2C, which revealed that AM1 mediates a gate-latch-lock interacting network, a structural feature that is conserved in the ABA-bound receptor/PP2C complex. Together, these results demonstrate that a single small molecule ABA mimic can activate multiple ABA receptors and protect plants from water loss and drought stress. Moreover, the AM1 complex crystal structure provides a structural basis for designing the next generation of ABA-mimicking small molecules.
来源
Cell Research
,2013,23(8):1043-1054 【核心库】
DOI
10.1038/cr.2013.95
关键词
abscisic acid
;
plant hormone
;
drought resistance
;
crystal structure
;
ABA-mimicking ligand
地址
1.
Shanghai Center for Plant Stress Biology and Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032
2.
Shanghai Center for Plant Stress Biology and Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Key Laboratory of Receptor Research, Chinese Academy of Sciences, Shanghai, 200032
3.
Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangdong, Guangzhou, 510530
4.
Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, USA, Grand Rapids, 49503
5.
Department of Horticulture and Landscape Architecture, Purdue University, USA, West Lafayette, 47906
6.
Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032
7.
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203
8.
VARI-SIMM Center, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Key Laboratory of Receptor Research, Chinese Academy of Sciences, Shanghai, 201203
语种
英文
文献类型
研究性论文
ISSN
1001-0602
学科
细胞生物学
基金
supported by the Jay and Betty Van Andel Foundation
;
Amway (China)
;
国家自然科学基金
;
US National Institute of Health
;
Funding for the Shanghai Center for Plant Stress Biology supported by Chinese Academy of Sciences
;
the 100-talent program of Chinese Academy of Sciences
文献收藏号
CSCD:4907353
参考文献 共
27
共2页
1.
Zhu J K. Salt and drought stress signal transduction in plants.
Annu Rev Plant Biol,2002,53:247-273
CSCD被引
628
次
2.
Xiong L. Regulation of abscisic acid biosynthesis.
Plant Physiol,2003,133:29-36
CSCD被引
63
次
3.
Park S Y. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins.
Science,2009,324:1068-1071
CSCD被引
273
次
4.
Ma Y. Regulators of PP2C phosphatase activity function as abscisic acid sensors.
Science,2009,324:1064-1068
CSCD被引
257
次
5.
Fujii H. Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress.
Proc Natl Acad Sci USA,2009,106:8380-8385
CSCD被引
79
次
6.
Soon F F. Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases.
Science,2012,335:85-88
CSCD被引
59
次
7.
Melcher K. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors.
Nature,2009,462:602-608
CSCD被引
76
次
8.
Miyazono K. Structural basis of abscisic acid signalling.
Nature,2009,462:609-614
CSCD被引
39
次
9.
Nishimura N. Structural mechanism of abscisic acid binding and signaling by dimeric PYR1.
Science,2009,326:1373-1379
CSCD被引
44
次
10.
Santiago J. The abscisic acid receptor PYR1 in complex with abscisic acid.
Nature,2009,462:665-668
CSCD被引
45
次
11.
Yin P. Structural insights into the mechanism of abscisic acid signaling by PYL proteins.
Nat Struct Mol Biol,2009,16:1230-1236
CSCD被引
46
次
12.
Melcher K. Thirsty plants and beyond: structural mechanisms of abscisic acid perception and signaling.
Curr Opin Struct Biol,2010,20:722-729
CSCD被引
6
次
13.
Hauser F. Evolution of abscisic acid synthesis and signaling mechanisms.
Curr Biol,2011,21:R346-R355
CSCD被引
41
次
14.
Wilkinson S. Food production: reducing water consumption by manipulating long-distance chemical signalling in plants.
J Exp Bot,2009,60:1885-1891
CSCD被引
6
次
15.
Morison J I L. Improving water use in crop production.
Phil Trans R Soc B,2008,363:639-658
CSCD被引
13
次
16.
Melcher K. Identification and mechanism of ABA receptor antagonism.
Nat Struct Mol Biol,2010,17:1102-1108
CSCD被引
14
次
17.
Qian W. A histone acetyltransferase regulates active DNA demethylation in Arabidopsis.
Science,2012,336:1445-1448
CSCD被引
39
次
18.
Gong Z. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase.
Cell,2002,111:803-814
CSCD被引
83
次
19.
Fujii H. In vitro reconstitution of an abscisic acid signalling pathway.
Nature,2009,462:660-664
CSCD被引
138
次
20.
Xu Z J. Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki bean seedlings.
Plant Physiol,2002,129:1285-1295
CSCD被引
24
次