壁面带微结构管道内Cassie状态稳定性的实验研究
Experimental study of cassie state stability inside a microchannel with microstructured surface
查看参考文献13篇
文摘
|
保持液体在微结构表面处于Cassie状态,是流动减阻的关键。首先利用MicroPTV分别测量了带微结构侧壁处于Cassie和Wenzel状态下的流场速度,表明Cassie状态下近壁速度提高至光滑表面的1.6倍,而Wenzel状态下近壁速度将减小。通过精细控制微管道的驱动压强,观察了液体在近壁由Cassie向Wenzel状态的转变,并测出C/W转变的临界压强值Δp_(cr)约10.9kPa,与Laplace理论预测值10.15kPa基本相符。考虑到Cassie状态失稳也会发生在液体进样过程中,实验还观察了微结构角点对液体进样的"锚定"作用,并初步分析了液体进样中自由液面在微结构表面保持Cassie状态的条件。 |
其他语种文摘
|
Keeping liquid stay at Cassie state at the surface of microstructured wall in the microchannel is a key point of drag reduction. In this paper, MicroPTV was used to measure the flow velocity profiles under Cassie/Wenzel states near microstructured wall respectively. The results showed that the velocity near microstructured wall under Cassie state was 1. 6times as great as near a smooth wall, on the other hand, the velocity under Wenzel state decreased. By controlling precisely the driven pressure, we observed the transition process from Cassie state to Wenzel state of the liquid-solid surface near the microstructures in a microchannel. It is shown that the critical transition-pressure is about 10. 9kPa, which is in good agreement with the theoretical value 10. 15kPa based on Laplace equation. Considering the transition from Cassie state to Wenzel state could happen during liquid injection into the microchannel, the“anchor”effect of the corner point of microstructure is observed, and an analysis is given to explain how the interface near microstructures maintains Cassie state during injection. |
来源
|
实验流体力学
,2013,27(3):1-6 【核心库】
|
关键词
|
减阻
;
微结构
;
锚定
;
临界压强
;
MicroPTV
|
地址
|
中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1672-9897 |
学科
|
力学 |
基金
|
国家自然科学基金
;
中国科学院知识创新工程重要方向项目
|
文献收藏号
|
CSCD:4875160
|
参考文献 共
13
共1页
|
1.
Joseph P. Direct measurement of the apparent slip length.
Physical Review E,2005,71:1-4
|
CSCD被引
21
次
|
|
|
|
2.
Ou J. Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces.
Physics of Fluids,2005,17:103606
|
CSCD被引
30
次
|
|
|
|
3.
Cassie A B D. Wettability of porous surfaces.
Transactions of the Faraday Society,1944,40:546
|
CSCD被引
802
次
|
|
|
|
4.
Wenzel R N. Resistance of solid surfaces to wetting by water.
Industrial & Engineering Chemistry,1936,28:988
|
CSCD被引
794
次
|
|
|
|
5.
Afuma A. Superhydrophobic states.
Nature Materials,2003,2(7):457-460
|
CSCD被引
135
次
|
|
|
|
6.
Barbieri L. Water wetting transition parameters of perfluorinated substrates with periodically distributed flat-top microscale obstacles.
Langmuir,2007,23:1723
|
CSCD被引
14
次
|
|
|
|
7.
Patankar N A. On the modeling of hydrophobic contact angles on rough surfaces.
Langmuir,2003,19:1249-1253
|
CSCD被引
59
次
|
|
|
|
8.
Patankar N A. Transition between Superhydrophobic States on Rough Surfaces.
Langmuir,2004,20:7097-7102
|
CSCD被引
139
次
|
|
|
|
9.
Byun D. Direct measurement of slip flows in superhydrophobic microchannels with transverse grooves.
Physics of Fluids,2008,20:113601
|
CSCD被引
3
次
|
|
|
|
10.
Huang J J. Lattice Boltzmann study of droplet motion inside a grooved channel.
Physics of Fluids,2009,21:022103
|
CSCD被引
8
次
|
|
|
|
11.
王绪伟. MPT方法中的纳米粒子识别技术.
实验流体力学,2010,24(3):77
|
CSCD被引
2
次
|
|
|
|
12.
Zheng X. The hydrophobicity of surfaces with micro-structures.
MEMS'06.1st IEEE International conference,2006:674-678
|
CSCD被引
1
次
|
|
|
|
13.
White F.
Viscous fluid flow,1974
|
CSCD被引
6
次
|
|
|
|
|