药物成瘾诱导相关大脑核团功能和行为改变的DNA甲基化机制
DNA Methylation Mechanisms Underlying the Changes of Drug Addiction-related Nuclei Function and Addictive Behavior
查看参考文献66篇
文摘
|
药物成瘾会导致相关神经环路的结构和功能长期改变。大量新的研究证据表明,在DNA序列不变的情况下,药物成瘾可通过影响不同亚型DNA甲基转移酶(DNMTs)的表达,使脑内多个相关核团发生DNA甲基化以及基因表达的改变,进而导致神经元功能的可塑性变化。因此,DNA甲基化被视作导致成瘾行为长期存在的可能机制之一。结合近几年来的重要发现,本文将重点讨论相关脑区的DNA甲基化在成瘾行为发生发展过程中的作用,以及成瘾药物影响DNA甲基化水平的可能机制,并试图提出可深入的研究展望。 |
其他语种文摘
|
Drug addiction induces long-term changes in the structure and function of the addiction-related circuitries. Recent studies suggested that drug abuse induced the changes of DNA methylation and gene expression in addiction-related nuclei by modulating the expression of three types of DNA methyltransferases (DNMTs) without changing DNA sequences, which in turn changed the functional neural plasticity. Therefore, DNA methylation is regarded as one of the possible mechanisms underlying persistent addictive behavior. In this review we discuss recent advances in our understanding of how DNA methylation contribute to the addictive behavior and how abusive drugs regulate the DNA methylation, and further proposed a few important directions for future research in the field |
来源
|
心理科学进展
,2013,21(6):975-981 【核心库】
|
关键词
|
药物成瘾
;
DNA甲基化
;
DNA甲基转移酶(DNMTs)
|
地址
|
中国科学院心理研究所, 中国科学院心理健康重点实验室, 北京, 100101
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1671-3710 |
学科
|
社会科学总论 |
基金
|
中科院心理所青年人才科研启动经费项目
;
中国科学院知识创新工程项目
;
国家自然科学基金
;
国家973计划
|
文献收藏号
|
CSCD:4861689
|
参考文献 共
66
共4页
|
1.
Adachi M. MeCP2-mediated transcription repression in the basolateral amygdala may underlie heightened anxiety in a mouse model of rett syndrome.
Journal of Neuroscience,2009,29(13):4218-4227
|
CSCD被引
4
次
|
|
|
|
2.
Alcantara A A. Cocaine- and morphine-induced synaptic plasticity in the nucleus accumbens.
Synapse,2011,65(4):309-320
|
CSCD被引
4
次
|
|
|
|
3.
Anier K. DNA methylation regulates cocaine-induced behavioral sensitization in mice.
Neuropsychopharmacology,2010,35(12):2450-2461
|
CSCD被引
9
次
|
|
|
|
4.
Bailey C H. The persistence of long-term memory: A molecular approach to self-sustaining changes in learning-induced synaptic growth.
Neuron,2004,44(1):49-57
|
CSCD被引
3
次
|
|
|
|
5.
Barros M. Decreased methylation of the NK3 receptor coding gene (TACR3) after cocaine-induced place preference in marmoset monkeys.
Addiction Biology,2011,18:452-454
|
CSCD被引
1
次
|
|
|
|
6.
Bloom F E. The science of substance abuse.
Science,1997,278(5335):15
|
CSCD被引
1
次
|
|
|
|
7.
Braconi C. MicroRNAdependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes.
Hepatology,2010,51(3):881-890
|
CSCD被引
18
次
|
|
|
|
8.
Cavalli G. Chromatin and epigenetics in development: Blending cellular memory with cell fate plasticity.
Development,2006,133(11):2089-2094
|
CSCD被引
2
次
|
|
|
|
9.
Chandrasekar V. MicroRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity.
Molecula and Cellular Neuroscience,2009,42(4):350-362
|
CSCD被引
23
次
|
|
|
|
10.
Chertkow-Deutsher Y. DNA methylation in vulnerability to post-traumatic stress in rats: Evidence for the role of the post-synaptic density protein Dlgap2.
International Journal of Neuropsychopharmacology,2010,13(3):347-359
|
CSCD被引
1
次
|
|
|
|
11.
Covington H E. Brief social defeat stress: Long lasting effects on cocaine taking during a binge and Zif268 mRNA expression in the amygdala and prefrontal cortex.
Neuropsychopharmacology,2005,30(2):310-321
|
CSCD被引
1
次
|
|
|
|
12.
D'Addario C. Ethanol induces epigenetic modulation of prodynorphin and pronociceptin gene expression in the rat amygdala complex.
Journal of Molecular Neuroscience,2013,49:312-319
|
CSCD被引
2
次
|
|
|
|
13.
Daumas S. Encoding, consolidation, and retrieval of contextual memory: Differential involvement of dorsal CA3 and CA1 hippocampal subregions.
Learning & Memory,2005,12(4):375-382
|
CSCD被引
1
次
|
|
|
|
14.
Delcuve G P. Epigenetic control.
Journal of Cellular Physiology,2009,219(2):243-250
|
CSCD被引
19
次
|
|
|
|
15.
Duncan J R. Current perspectives on the neurobiology of drug addiction: A focus on genetics and factors regulating gene expression.
ISRN Neurology,2012,2012:972607
|
CSCD被引
1
次
|
|
|
|
16.
Eipper-Mains J E. MicroRNA-Seq reveals cocaine-regulated expression of striatal microRNAs.
RNA,2011,17(8):1529-1543
|
CSCD被引
6
次
|
|
|
|
17.
Fabbri M. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B.
Proceedings of the National Academy of Sciences of the United States of America,2007,104(40):15805-15810
|
CSCD被引
79
次
|
|
|
|
18.
Feng J. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons.
Nature Neuroscience,2010,13(4):423-430
|
CSCD被引
32
次
|
|
|
|
19.
Feng Y Q. DNA methylation supports intrinsic epigenetic memory in mammalian cells.
PLoS Genetics,2006,2(4):e65
|
CSCD被引
6
次
|
|
|
|
20.
Foulks J M. Epigenetic drug discovery: Targeting DNA methyltransferases.
Journal of Biomolecular Screening,2012,17(1):2-17
|
CSCD被引
5
次
|
|
|
|
|