云南武定迤纳厂Fe-Cu-REE矿床的锆石U-Pb和黄铜矿Re-Os年代学、稀土元素地球化学及其地质意义
Zircon U-Pb and chalcopyrite Re-Os geochronology,REE geochemistry of the Yinachang Fe-Cu-REE deposit in Yunnan Province and its geological significance
查看参考文献69篇
文摘
|
迤纳厂矿床是康滇地区典型的铁-铜-稀土矿床之一。因为其特殊的矿物组合(磁铁矿与黄铜矿共生)以及富含稀土矿物,这类矿床一直是矿床学家研究的热点。然而由于其围岩遭受不同程度的变质和蚀变作用,这类矿床的成矿时代与矿床成因一直存在争议。本文通过对迤纳厂组中层状凝灰岩和火山角砾岩所含锆石进行LA-ICP-MSU-Pb定年来揭示迤纳厂组的最大沉积年龄。大多数锆石具有明显的震荡环带和较高的Th/U比值(>0.4)表明它们均是岩浆锆石,近200粒碎屑锆石的~(207)Pb/~(206)Pb年龄大致可以分为四组:1.75~1.88Ga,1.90~2.00Ga,2.02~2.20Ga和2.30~2.40Ga,且最老年龄在3.0Ga左右,而最年轻年龄在1750Ma左右。这一定年结果反映了迤纳厂组的沉积上限大约为1.7Ga,并且在康滇地区可能还有更老的基底存在。通过对矿石矿物黄铜矿的Re-Os同位素定年测试,直接限定了矿床的成矿时代。6个黄铜矿样品的Re-Os同位素等时线年龄为1690±99Ma(MSWD=9.0),模式年龄的加权平均值为1685±37Ma(MSWD=3.0),表明该矿床形成于距今约1.7Ga。另外,主要类型矿石具显著的正铕异常和轻稀土富集的特点,与现代海底热液极其相似。年代学研究显示矿床的形成时代和地层的沉积时代大致相同,而REE揭示的流体特征反映其成矿作用与海底热液活动有关。这些结果暗示了该矿床为海底火山喷发-同生沉积形成。近来的较多研究证实,康滇地区存在1.7Ga左右较大范围的岩浆活动和较多同期铁-铜矿床,表明该期岩浆活动可能是制约该区铁-铜矿床形成的关键因素,且岩浆活动可能与约1.7Ga的Columbia超大陆的裂解事件有关。 |
其他语种文摘
|
The Yinachang Fe-Cu-REE ore deposit is hosted in the Paleoproterozoic Yinachang Formation of the Lower Kunyang Group in the Kangdian iron-copper metallogenic province,SW China. The main minerals in the Yinachang ore bodies consist of chalcopyrite,magnetite, quartz and calcite. As the host rocks of the deposit had experienced intensively alternation and metamorphism,the age and origin of the Yinachang deposit are still a matter of hot debate. U-Pb ages of detrital zircons from the volcanic tuff and breccia in the Yinachang Formation have been used to identify the provenance and evaluate the age of the Yinachang Formation of the Lower Kunyang Group. Most analyzed zircon grains show oscillatory zoning and have high Th /U ratios (> 0. 4), suggesting that they were mainly derived from igneous rocks. A total amounts of about 200 detrital zircons exhibit U-Pb age populations at 1. 75 ~ 1. 88Ga,1. 90 ~ 2. 00Ga,2. 02 ~ 2. 20Ga and 2. 30 ~ 2. 40Ga,with the oldest ~(207)Pb /~(206)Pb age of ~ 3. 0Ga and the youngest age of ca. 1750Ma. The dating results provide a maximum deposition age of ca. 1. 7Ga for the Yinachang Formation,and suggest the possible existence of older basement. Rhenium-osmium dating for six chalcopyrite samples from the Yinachang Fe-Cu-REE deposit was conducted to constrain the timing of sulfide mineralization. Direct Re-Os dating for chalcopyrite of ore minerals yields an isochron age of 1690 ± 99Ma (MSWD = 9. 0) and a weighted mean of 1685 ± 37Ma (MSWD = 3. 0),respectively,indicating the main ore-forming age of about 1. 7Ga. In addition,the major ore types exhibit significantly positive Eu anomaly and LREE enrichment,similar to those of modern submarine hydrothermal fluids. The above dating results reveal that the ore-forming age of the deposit is nearly contemporaneous with the deposition timing of the Yinachang Formation,and the characteristics of fluid deduced from REE indicate that the ore formation was related to submarine hydrothermal fluids activity. It is therefore suggested that the Yinachang Fe-Cu-REE deposit is a volcanic exhalation-hydrothermal sedimentary deposit. Several recent studies showed the occurrence of relatively widespread magmatism at ca. 1. 7Ga and large numbers of synchronous Fe-Cu deposits,suggesting that the magmatism is probably the crucial factor for the formation of deposits in this region. Furthermore,the Fe-Cu deposits in the Kangdian region may be related to the breakup of the Columbia supercontinent at about 1. 7Ga. |
来源
|
岩石学报
,2013,29(4):1167-1186 【核心库】
|
关键词
|
铁-铜-稀土矿床
;
锆石U-Pb 定年
;
黄铜矿Re-Os 定年
;
稀土元素地球化学
;
迤纳厂
;
云南
|
地址
|
1.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳, 550002
2.
昆明理工大学国土资源工程学院, 昆明, 650093
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0569 |
学科
|
地质学 |
基金
|
国家973计划
;
中国科学院知识创新工程重要方向项目
;
国家自然科学基金项目
;
矿床地球化学国家重点实验室125项目群
|
文献收藏号
|
CSCD:4851867
|
参考文献 共
69
共4页
|
1.
Henderson P. Geochemistry of the rare-earth elements: Meteorite studies.
Rare Earth Element Geochemistry,1984:63-114
|
CSCD被引
12
次
|
|
|
|
2.
Chen W T. Paragenesis, stable isotopes, and molybdenite Re-Os isotope age of the Lala iron-copper deposit, Southwest China.
Economic Geology,2012,107(3):459-480
|
CSCD被引
37
次
|
|
|
|
3.
Craddock P R. Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea: Indicators of sub-seafloor hydrothermal processes in back-arc basins.
Geochimica et Cosmochimica Acta,2010,74(19):5494-5513
|
CSCD被引
22
次
|
|
|
|
4.
Elderfield H. The rare earth elements in seawater.
Nature,1982,296(5854):214-219
|
CSCD被引
228
次
|
|
|
|
5.
Graf J L. Rare earth elements as hydrothermal tracers during the formation of massive sulfide deposits in volcanic rocks.
Economic Geology,1977,72(4):527-548
|
CSCD被引
30
次
|
|
|
|
6.
Greentree M R. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia.
Precambrian Research,2006,151(1/2):79-100
|
CSCD被引
126
次
|
|
|
|
7.
Greentree M R.
Tectonostratigraphic analysis of the Proterozoic Kangdian iron oxide-copper Province, South-west China. Ph. D. Dissertation,2007:1-284
|
CSCD被引
1
次
|
|
|
|
8.
Greentree M R. The oldest known rocks in south-western China: SHRIMP U-Pb magmatic crystallization age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group.
Journal of Asian Earth Sciences,2008,33(5/6):289-302
|
CSCD被引
106
次
|
|
|
|
9.
Hu A Q. Geochronology of the Dahongshan Group.
Chinese Journal of Geochemistry,1991,10(3):195-203
|
CSCD被引
27
次
|
|
|
|
10.
Hu Z C. Contrasting matrix induced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution.
Journal of Analytical Atomic Spectrometry,2011,26(2):425-430
|
CSCD被引
65
次
|
|
|
|
11.
Jenkin G R T. An investigation of closure temperature of the biotite Rb-Sr system: The importance of cation exchange.
Geochimica et Cosmochimica Acta,2001,65(7):1141-1160
|
CSCD被引
4
次
|
|
|
|
12.
Klinkhammer G P. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges.
Geochimica et Cosmochimica Acta,1994,58(23):5105-5113
|
CSCD被引
119
次
|
|
|
|
13.
Li Z X. The breakup of Rodinia: Did it start with a mantle plume beneath South China?.
Earth and Planetary Science Letters,1999,173(3):171-181
|
CSCD被引
339
次
|
|
|
|
14.
Li Z X. Grenvillian continental collision in South China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia.
Geology,2002,30(2):163-166
|
CSCD被引
274
次
|
|
|
|
15.
Lottermoser B G. Rare earth element study of exhalites within the Willyama Supergroup, Broken Hill Block, Australia.
Mineralium Deposita,1989,24(2):92-99
|
CSCD被引
17
次
|
|
|
|
16.
Lottermoser B G. Rare earth elements and hydrothermal ore formation processes.
Ore Geology Reviews,1992,7(1):25-41
|
CSCD被引
94
次
|
|
|
|
17.
Liu Y S. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS.
Chinese Science Bulletin,2010,55(15):1535-1546
|
CSCD被引
948
次
|
|
|
|
18.
Liu Y S. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths.
Journal of Petrology,2010,51(1/2):537-571
|
CSCD被引
1633
次
|
|
|
|
19.
Ludwig K. Isoplot /Ex, Version 3.
0: A geochronological tool kit for Microsoft Excel,2001:43
|
CSCD被引
1
次
|
|
|
|
20.
Michard A. The REE content of some hydrothermal fluids.
Chemical Geology,1986,55(1/2):51-60
|
CSCD被引
82
次
|
|
|
|
|