金沙江-红河富碱侵入岩带含矿与不含矿富碱斑岩Li同位素地球化学特征及其地质意义
Lithium Isotopic Characteristics of Ore-Bearing and Barren Intrusions in the Jinshajiang-Honghe Alkali-Rich Intrusive Belt
查看参考文献42篇
文摘
|
Li同位素示踪是近几年发展起来的一种新兴的稳定同位素地球化学方法,它在示踪岩浆源区物质组成微小变化方面非常灵敏。本文首次运用Li同位素地球化学示踪方法对金沙江-红河富碱侵入岩带不含矿的剑川北岩体和含矿的万硐山岩体进行了研究。结果表明剑川北岩体和万硐山岩体的Li/Yb的比值分别为7.20~9.58和11.18~20.0,δ~7Li特征分别为+0.3‰~+6.2‰和-6.5‰~+0.1‰;含矿与不含矿岩体δ~7Li值存在明显差异,指示含矿岩体的岩浆源区可能遭受过较大程度的板片脱水所释放的具有较低δ7Li值的流体的交代作用。研究结果为进一步揭示金沙江-红河富碱侵入岩带富碱斑岩源区特征提供了重要依据。 |
其他语种文摘
|
Lithium isotope tracing is a new stable isotope geochemical method developing fast in recent years, and can trace tiny changes of magma source region. In this article, lithium isotope geochemistry was used to study ore-bearing Wandongshan intrusion and ore-barren Jianchuanbei intrusion in Jinshajiang-honghe alkaline-rich intrusive belt. Results show that the Li/Yb ratio ranges of Wandongshan intrusion and Jianchuanbei intrusion are 7.20-9.58 and 11.18-20.0, respectively. δ~7Li values of Wandongshan intrusion and Jianchuanbei intrusion are +0.3‰-+6.2‰ and -6.5‰-+0.1‰, respectively. This result may due to the different degrees of slab-derived fluid metasomatism between ore-bearing Wandongshan intrusion and ore-barren Jianchuanbei intrusion. It offers an important clue to further study on the source region of the Jinshajiang-honghe alkaline-rich intrusive belt. |
来源
|
矿物学报
,2013,33(2):221-230 【核心库】
|
关键词
|
富碱侵入岩
;
Li同位素地球化学
;
流体交代作用
;
示踪源区
|
地址
|
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-4734 |
学科
|
地质学 |
基金
|
国家自然科学重点基金项目
;
中国科学院地球化学研究所矿床地球化学国家重点实验室项目群项目
|
文献收藏号
|
CSCD:4843716
|
参考文献 共
42
共3页
|
1.
胥磊落.
金沙江-红河斑岩Cu(Mo、Au)成矿系统成岩成矿年代学和岩浆氧逸度特征研究,2011
|
CSCD被引
1
次
|
|
|
|
2.
Hu R Z. Helium and argon isotope geochemistry of alkaline intrusion-associated gold and copper deposits along the Red River-Jinshajiang fault belt, SW China.
Chemical Geology,2004,203(3):305-317
|
CSCD被引
75
次
|
|
|
|
3.
Zhang L S. Age and origin of magmatism along the Cenozoic Red River shear belt, China.
Contributions to Mineralogy and Petrology,1999,134(1):67-85
|
CSCD被引
75
次
|
|
|
|
4.
Bi Xianwu. REE composition of primary and altered feldspar from the mineralized alteration zone of alkaline intrusive rocks, western Yunnan Province, China.
Ore Geology Reviews,2002,19(1):69-78
|
CSCD被引
18
次
|
|
|
|
5.
Bi Xianwu. Relations between A-type granites and copper mineralization as exemplified by the Machangqing Cu deposit.
Science in China Series D: Earth Sciences,2000,43(1):93-102
|
CSCD被引
6
次
|
|
|
|
6.
Hu Ruizhong. Helium and argon isotope systematics in fluid inclusions of Machangqing copper deposit in west Yunnan province, China.
Chemical Geology,1998,146(1/2):55-63
|
CSCD被引
55
次
|
|
|
|
7.
Bi Xianwu. Crystallisation conditions (T, P, f_(O 2)) from mineral chemistry of Cu-and Au-mineralised alkaline intrusions in the Red River-Jinshajiang alkaline igneous belt, western Yunnan Province, China.
Mineralogy and Petrology,2009,96(1):43-58
|
CSCD被引
23
次
|
|
|
|
8.
邓万明. 滇西新生代富碱斑岩的岩石特征与成因.
地质科学,1998,33(4):412-425
|
CSCD被引
94
次
|
|
|
|
9.
Rudnick R L. Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina.
Chemical Geology,2004,212(1/2):45-57
|
CSCD被引
50
次
|
|
|
|
10.
Moriguti T. Across-arc variation of Li isotopes in lavas and implications for crust/mantle recycling at subduction zones.
Earth and Planetary Science Letters,1998,163(1):167-174
|
CSCD被引
27
次
|
|
|
|
11.
Krienitz. Lithium isotope variations in ocean island basalts-Implications for the development of mantle heterogeneity.
Journal of Petrology,2012,53(11):2333-2347
|
CSCD被引
8
次
|
|
|
|
12.
Teng F Z. Lithium isotopic systematics of A-type granites and their mafic enclaves: Further constraints on the Li isotopic composition of the continental crust.
Chemical Geology,2009,262(3/4):370-379
|
CSCD被引
18
次
|
|
|
|
13.
Nishio Y. Lithium isotopic systematics of the mantle-derived ultramafic xenoliths: Implications for EM1 origin.
Earth and Planetary Science Letters,2004,217(3/4):245-261
|
CSCD被引
14
次
|
|
|
|
14.
Tang Yanjie. Slab-derived lithium isotopic signatures in mantle xenoliths from northeastern North China Craton.
Lithos,2012,149:79-90
|
CSCD被引
26
次
|
|
|
|
15.
苏嫒娜. MC-ICP-MS高精度测定Li同位素分析方法.
地学前缘,2011,18(2):304-314
|
CSCD被引
15
次
|
|
|
|
16.
田世洪. 拉萨地块西段中新世赛利普超钾质火山岩富集地幔源区和岩石成因:Li同位素制约.
矿床地质,2012,31(4):791-812
|
CSCD被引
6
次
|
|
|
|
17.
Hou Z Q. Himalaya Cu-Mo-Au mineralization in the eastern Indo-Asian collision zone: Constraints from Re-Os dating of molybdenite.
Mineralium Deposita,2006,41(1):33-45
|
CSCD被引
68
次
|
|
|
|
18.
徐受民.
滇西北衙金矿床的成矿模式及与新生代富碱斑岩的关系,2007
|
CSCD被引
5
次
|
|
|
|
19.
和文言. 滇西北衙多金属矿田矿床成因类型及其与富碱斑岩关系初探.
岩石学报,2012,28(5):1401-1412
|
CSCD被引
35
次
|
|
|
|
20.
汪齐连. 天然样品中锂的分离及其同位素比值的测定.
分析化学,2006,34(6):764-768
|
CSCD被引
13
次
|
|
|
|
|