同位素标记在汞的生物地球化学研究中的应用
Applications of isotopic labeling technique in the studies of mercury biogeochemistry: A review
查看参考文献63篇
文摘
|
汞是一种可以长距离迁移的全球性污染物,无机汞进入水生环境可以转化为高神经毒素的甲基汞,通过在食物链中发生生物积累和生物放大作用,并最终威胁人体健康。同位素具有示踪特性,在环境中人为添加放射性汞同位素或单一富集稳定汞同位素标记的单质汞或汞化合物,研究汞同位素的行为特征可以揭示生态环境中汞的生物地球化学行为。汞同位素标记技术的发展和应用为环境中汞的迁移和转化研究,尤其复杂环境中汞的形态转化和归趋提供了有效手段。本文介绍了放射性汞同位素标记技术和单一富集稳定汞同位素标记技术的原理,汞同位素标记技术在环境样品和生物样品的汞形态分析,陆地系统中土壤-植物-大气之间汞的迁移与转化,水生生态系统大气沉降汞的迁移和转化、汞的甲基化作用及形态汞的生物富集等领域的主要研究成果,并展望了汞同位素标记技术的应用前景。 |
其他语种文摘
|
As a global pollutant, mercury (Hg) can be transported for a long distance in atmosphere. Methyl-mercury (MeHg), an extremely toxic organic form of Hg formed by the methylation from inorganic Hg in aquatic environment, can be bio-accumulated and bio-magnified along food chains, potentially threatening human health. Isotopes can trace the behaviors of elements in the environment. Adding Hg isotope to the environment or using Hg isotopic labeling technique is a powerful tool for the studies of Hg biogeochemical behaviors, including the transportation and transformation of Hg in the environment. This paper reviewed the basic theory of Hg isotopic labeling technique, the applications of this technique in sample Hg species analysis, and the Hg transportation/ transformation in soil-plant-atmosphere system and in aquatic ecosystem, and prospected the applications of Hg isotopic labeling technique in the studies of Hg environmental geochemistry. |
来源
|
生态学杂志
,2013,32(5):1335-1346 【核心库】
|
关键词
|
汞
;
示踪
;
添加
;
迁移/ 转化
;
甲基化
;
去甲基化
|
地址
|
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1000-4890 |
学科
|
环境科学基础理论 |
基金
|
国家自然科学基金
;
贵州省自然科学基金
|
文献收藏号
|
CSCD:4840022
|
参考文献 共
63
共4页
|
1.
孟博.
西南地区敏感生态系统汞的生物地球化学过程及健康风险评价(博士学位论文),2011
|
CSCD被引
2
次
|
|
|
|
2.
Acha D. Sulfate-reducing bacteria in floating macrophyte rhizospheres from an Amazonian floodplain lake in Bolivia and their association with Hg methylation.
Applied and Environmental Microbiology,2005,71:7531-7535
|
CSCD被引
5
次
|
|
|
|
3.
Audi G. The Nubase evaluation of nuclear and decay properties.
Nuclear Physics A,2003,729:3-128
|
CSCD被引
65
次
|
|
|
|
4.
Avramescu M L. Biogeochemical factors influencing net mercury methylation in contaminated freshwater sediments from the St. Lawrence River in Cornwall, Ontario, Canada.
Science of the Total Environment,2011,409:968-978
|
CSCD被引
12
次
|
|
|
|
5.
Babiarz C L. Application of ultrafiltration and stable isotopic amendments to field studies of mercury partitioning to filterable carbon in lake water and overland runoff.
Science of the Total Environment,2003,304:295-303
|
CSCD被引
1
次
|
|
|
|
6.
Berglund M. Isotopic compositions of the elements 2009 (IUPAC Technical Report).
Pure and Applied Chemistry,2011,83:397-410
|
CSCD被引
36
次
|
|
|
|
7.
Bergquist B A. The odds and evens of mercury isotopes: Applications of mass-dependent and mass-independent isotope fractionation.
Elements,2009,5:353-357
|
CSCD被引
19
次
|
|
|
|
8.
Caille N. Metal transfer to plants grown on a dredged sediment: Use of radioactive isotope 203 Hg and titanium.
Science of the Total Environment,2005,341:227-239
|
CSCD被引
1
次
|
|
|
|
9.
Clough R. Investigation of equilibration and uncertainty contributions for the determination of inorganic mercury and methylmercury by isotope dilution inductively coupled plasma mass spectrometry.
Analytica Chimica Acta,2003,500:155-170
|
CSCD被引
1
次
|
|
|
|
10.
Coelho-Souza S A. Mercury methylation and bacterial activity associated to tropical phytoplankton.
Science of the Total Environment,2006,364:188-199
|
CSCD被引
2
次
|
|
|
|
11.
Cohen M. Modeling the atmospheric transport and deposition of mercury to the Great Lakes.
Environmental Research,2004,95:247-265
|
CSCD被引
7
次
|
|
|
|
12.
Desrosiers M. Mercury methylation in the epilithon of boreal shield aquatic ecosystems.
Environmental Science and Technology,2006,40:1540-1546
|
CSCD被引
3
次
|
|
|
|
13.
Eckley C S. Determination of mercury methylation potentials in the water column of lakes across Canada.
Science of the Total Environment,2006,368:111-125
|
CSCD被引
17
次
|
|
|
|
14.
Ericksen J A. Assessing the potential for re-emission of mercury deposited in precipitation from arid soils using a stable isotope.
Environmental Science and Technology,2005,39:8001-8007
|
CSCD被引
9
次
|
|
|
|
15.
Fry B.
Stable Isotope Ecology,2006
|
CSCD被引
36
次
|
|
|
|
16.
Furutani A. Measurement of mercury methylation in lake water and sediment samples.
Applied and Environmental Microbiology,1980,40:770-776
|
CSCD被引
11
次
|
|
|
|
17.
Graydon J A. Investigation of mercury exchange between forest canopy vegetation and the atmosphere using a new dynamic chamber.
Environmental Science and Technology,2006,40:4680-4688
|
CSCD被引
9
次
|
|
|
|
18.
Guimaraes J R D. Hg methylation in sediments and floating meadows of a tropical lake in the Pantanal floodplain, Brazil.
Science of the Total Environment,1998,213:165-175
|
CSCD被引
6
次
|
|
|
|
19.
Han S. Relocation effects of dredged marine sediments on mercury geochemistry: Venice lagoon, Italy.
Estuarine, Coastal and Shelf Science,2011,93:7-13
|
CSCD被引
3
次
|
|
|
|
20.
Harris R C. Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition.
Proceedings of the National Academy of Sciences of the United states of America,2007,104:16586-16591
|
CSCD被引
8
次
|
|
|
|
|