各向异性网格下抛物方程一个新的非协调混合元收敛性分析
CONVERGENCE ANALYSIS OF A NEW NONCONFORMING MIXED FINITE ELEMENT FOR PARABOLIC EQUATION ON ANISOTROPIC MESH
查看参考文献29篇
文摘
|
本文将Crouzeix-Raviart型非协调线性三角形元应用到抛物方程,建立了一个新的混合元格式.在抛弃传统有限元分析的必要工具Ritz投影算子的前提下,直接利用单元的插值性质和导数转移技巧,分别得到了各向异性剖分下关于原始变量u的H~1-模和积分意义下L~2-模以及通量(P)=-▽u在L~2-模下的最优阶误差估计.数值结果与我们的理论分析是相吻合的. |
其他语种文摘
|
In this paper, a Crouzeix-Raviart type nonconforming linear triangular finite element is applied to the parabolic equation and a new mixed element formulation is established. By utilizing the properties of the interpolation on the element and derivative delivery techniques instead of the Ritz projection operator, which is an indispensable tool in the traditional finite element analysis, the optimal order error estimates for the primitive solution u in broken H~1?norm and L~2-norm with integral and the flux p=-▽u in L~2-norm are obtained on anisotropic meshes, respectively. The numerical results show the validity of the theoretical analysis. |
来源
|
计算数学
,2013,35(2):171-180 【核心库】
|
关键词
|
抛物方程
;
非协调元
;
新混合元格式
;
各向异性网格
;
收敛性分析
|
地址
|
1.
许昌学院数学与统计学院, 河南, 许昌, 461000
2.
郑州大学数学系, 郑州, 450052
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0254-7791 |
学科
|
数学 |
基金
|
国家自然科学基金
;
国家教育部高等学校博士学科点专项科研基金
|
文献收藏号
|
CSCD:4839798
|
参考文献 共
29
共2页
|
1.
Clarle P G.
The Finite Element Method for Elliptic Problem,1978
|
CSCD被引
1
次
|
|
|
|
2.
林群.
高效有限元构造与分析,1996
|
CSCD被引
119
次
|
|
|
|
3.
Thomee V.
Galerkin Finite Element Methods for Parabolic Problems,1997
|
CSCD被引
33
次
|
|
|
|
4.
Thomee V. Superconvergence of the gradient in piecewise linear finite element approximation to a parabolic problem.
SIAM J. Numer. Anal,1989,26(3):553-573
|
CSCD被引
14
次
|
|
|
|
5.
Thomee V. Error estimates for semidiscrete finite element methods for parabolic interod- ifferential equations.
Math. Comp,1989,53(187):121-139
|
CSCD被引
14
次
|
|
|
|
6.
Lin Y P. Ritz-Volterra projections to finite element spaces and applications to intergrodifferential and related equations.
SIAM J. Numer. Anal,1991,28(4):1047-1070
|
CSCD被引
28
次
|
|
|
|
7.
Chrysafinos K. Error estimates for semidiscrete finite element approximations of linear and semilinear paraboic equations uner minimal regularity assumptions.
SIAM J. Numer. Anal,2002,40(1):282-306
|
CSCD被引
1
次
|
|
|
|
8.
Th Apel.
Anisotropic Finite Elements: Local Estimates and Applications,1999
|
CSCD被引
10
次
|
|
|
|
9.
Apel T. Anisotropic interpolation with application to the finite elment method.
Computing,1992,47(3/4):277-293
|
CSCD被引
49
次
|
|
|
|
10.
Chen S C. Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes.
IMA J. Numer. Anal,2004,24(1):77-95
|
CSCD被引
115
次
|
|
|
|
11.
Shi D Y. ON THE ANISOTROPIC ACCURACY ANALYSIS OF ACM'S NONCONFORMING FINITE ELEMENT *.
J. Comput. Math,2005,23(6):635-646
|
CSCD被引
16
次
|
|
|
|
12.
Shi D Y. AN ANISOTROPIC NONCONFORMING FINITE ELEMENT WITH SOME SUPERCONVERGENCE RESULTS.
J. Comput. Math,2005,23(3):261-274
|
CSCD被引
110
次
|
|
|
|
13.
Lin Q. Superconvergence and extrapolation of nonconforming low order finite elements applied to the possion equation.
IMA J. Numer. Anal,2005,25(1):160-181
|
CSCD被引
78
次
|
|
|
|
14.
Shi D Y. A NONCONFORMING ANISOTROPIC FINITE ELEMENT APPROXIMATION WITH MOVING GRIDS FOR STOKES PROBLEM.
J. Comput. Math,2006,24(5):561-578
|
CSCD被引
20
次
|
|
|
|
15.
Shi D Y. A LOCKING-FREE ANISOTROPIC NONCONFORMING FINITE ELEMENT FOR PLANAR LINEAR ELASTICITY PROBLEM.
Acta Math. Sci. Ser. B Engl. Ed,2007,27(1):193-202
|
CSCD被引
15
次
|
|
|
|
16.
Shi D Y. A class of Crouzeix-Raviart type nonconforming finite element methods for parabolic variational inequality problem with moving grid on anistropic meshes.
Hokkaido. Math. J,2007,36(4):687-709
|
CSCD被引
11
次
|
|
|
|
17.
Shi D Y. Low order Crouzeix-Raviart type nonconforming finite element methods for approximationg Maxwell's equations.
Int. J. Numer. Anal. Model,2008,5(3):373-385
|
CSCD被引
19
次
|
|
|
|
18.
Shi D Y. A LOW ORDER NONCONFORMING ANISOTROPIC FINITE ELEMENT APPROXIMATION TO PARABOLIC PROBLEM.
J. Syst. Sci. & Complexity,2009,22:518-532
|
CSCD被引
2
次
|
|
|
|
19.
Shi D Y. Nonconforming mixed finite element approximation to the stationary Navier-Stokes equations on anisotropic meshes.
Nonlinear Anal. TMA,2009,71(9):3842-3852
|
CSCD被引
15
次
|
|
|
|
20.
Shi D Y. A new low-order non-conforming mixed finite-element scheme for secondorder elliptic problems.
Int. J. Comput. Math,2011,88(10):2167-2177
|
CSCD被引
8
次
|
|
|
|
|