分布式水文模型的并行计算研究进展
Review on parallel computing of distributed hydrological models
查看参考文献46篇
文摘
|
大流域、高分辨率、多过程耦合的分布式水文模拟计算量巨大,传统串行计算技术不能满足其对计算能力的需求,因此需要借助于并行计算的支持。本文首先从空间、时间和子过程三个角度对分布式水文模型的可并行性进行了分析,指出空间分解的方式是分布式水文模型并行计算的首选方式,并从空间分解的角度对水文子过程计算方法和分布式水文模型进行了分类。然后对分布式水文模型的并行计算研究现状进行了总结。其中,在空间分解方式的并行计算方面,现有研究大多以子流域作为并行计算的基本调度单元;在时间角度的并行计算方面,有学者对时空域双重离散的并行计算方法进行了初步研究。最后,从并行算法设计、流域系统综合模拟的并行计算框架和支持并行计算的高性能数据读写方法3个方面讨论了当前存在的关键问题和未来的发展方向。 |
其他语种文摘
|
High resolution distributed hydrological simulations over large watersheds require very large amounts of computations, which cannot be provided by sequential computation techniques on which existing hydrological models were developed. So parallel computing of distributed hydrological models is needed. In this paper, we first analyzed the parallelizability of distributed hydrological models from three angles (spatial, temporal and sub-process) and pointed out that spatial domain decomposition is the preferred approach to parallel computing of distributed hydrological models. According to spatial relationships among simulation units, distributed hydrological models, as well as simulation methods for hydrological processes, are classified into different types. Then, current studies on parallel computing of distributed hydrological models were introduced. For most current studies on parallel computing using spatial domain decomposition methods, sub-basin was adopted as the basic scheduling unit for parallel computing. The temporal-spatial discretization method proved the feasibility of parallel computing utilizing parallelization from the temporal angle. Last, the key technologies and future research directions were discussed in the following aspects: 1) parallel algorithms; 2) parallel computing framework for integrated watershed system simulations; 3) high performance input/output for parallel computing of distributed hydrological models. |
来源
|
地理科学进展
,2013,32(4):538-547 【核心库】
|
关键词
|
分布式水文模型
;
并行计算
;
研究进展
;
空间分解
|
地址
|
1.
中国科学院地理科学与资源研究所, 资源与环境信息系统国家重点实验室, 北京, 100101
2.
中国科学院遥感与数字地球研究所, 北京, 100094
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-6301 |
学科
|
地球物理学 |
基金
|
国家863计划
;
国家自然科学基金
;
国家科技部国际合作项目
|
文献收藏号
|
CSCD:4824288
|
参考文献 共
46
共3页
|
1.
Abbott M B. An introduction to the European Hydrological System: Systeme Hydrologique Europeen, "SHE", 2: Structure of a physically-based, distributed modelling system.
Journal of Hydrology,1986,87(1/2):61-77
|
CSCD被引
84
次
|
|
|
|
2.
Apostolopoulos T K. Parallel computation for streamflow prediction with distributed hydrologic models.
Journal of Hydrology,1997,197(1/4):1-24
|
CSCD被引
8
次
|
|
|
|
3.
Beven K J.
Rainfall-Runoff modelling: The primer,2001
|
CSCD被引
2
次
|
|
|
|
4.
Borah D K. Watershed-scale hydrologic and nonpoint-source pollution models: Review of mathematical bases.
Transactions of the ASAE,2003,46(6):1553-1566
|
CSCD被引
27
次
|
|
|
|
5.
Borah D K. Watershed-scale hydrologic and nonpoint-source pollution models: Review of applications.
Transactions of the ASAE,2004,47(3):789-803
|
CSCD被引
29
次
|
|
|
|
6.
Borthakur D.
HDFS architecture guide,2012
|
CSCD被引
3
次
|
|
|
|
7.
陈国良. 并行计算的一体化研究现状与发展趋势.
科学通报,2009,54(8):1043-1049
|
CSCD被引
28
次
|
|
|
|
8.
陈腊娇. 流域生态水文模型研究进展.
地理科学进展,2011,30(5):535-544
|
CSCD被引
22
次
|
|
|
|
9.
Cheng J R C. Parallelization of the WASH123D code, Phase II: Coupled two-dimensional overland and three-dimensional subsurface flows.
Proceedings of World Water and Environmental Resources Congress 2005,2005
|
CSCD被引
1
次
|
|
|
|
10.
Ciarapica L. TOPKAPI: A model for the representation of the rainfall-runoff process at different scales.
Hydrological Processes,2002,16(2):207-229
|
CSCD被引
13
次
|
|
|
|
11.
Cunge J. On the subject of a flood propagation computation method (Muskingum method).
Journal of Hydraulic Research,1969,7(2):205-230
|
CSCD被引
34
次
|
|
|
|
12.
Dean J. MapReduce: Simplified data processing on large clusters.
Communications of the ACM,2008,51(1):107-113
|
CSCD被引
738
次
|
|
|
|
13.
DeRoo A P J. LISEM: A single-event physically based hydrological and soil erosion model for drainage basins, 1: Theory, input and output.
Hydrological Processes,1996,10(8):1107-1117
|
CSCD被引
111
次
|
|
|
|
14.
贾海鹏. 基于OpenCL的拉普拉斯图像增强算法优化研究.
计算机科学,2012,39(5):271-277
|
CSCD被引
11
次
|
|
|
|
15.
Julien P Y. Raster-based hydrologic modeling of spatially-varied surface runoff.
Journal of the American Water Resources Association,1995,31(3):523-536
|
CSCD被引
7
次
|
|
|
|
16.
Gassman P W. The soil and water assessment tool: Historical development, applications,and future research directions.
Transactions of the ASABE,2007,50(4):1211-1250
|
CSCD被引
113
次
|
|
|
|
17.
Karypis G. A fast and high quality multilevel scheme for partitioning irregular graphs.
Siam Journal on Scientific Computing,1998,20(1):359-392
|
CSCD被引
142
次
|
|
|
|
18.
Kolditz O. Development of a regional hydrologic soil model and application to the Beerze-Reusel drainage basin.
Environmental Pollution,2007,148(3):855-866
|
CSCD被引
1
次
|
|
|
|
19.
Kollet S J. Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model.
Advances inWater Resources,2006,29(7):945-958
|
CSCD被引
22
次
|
|
|
|
20.
李铁键. 集群计算在数字流域模型中的应用.
水科学进展,2006,17(6):841-845
|
CSCD被引
13
次
|
|
|
|
|