地球内部物质电学性质原位测量的影响因素和导电机制——以地壳矿物为例
Influential Factors and Conduction Mechanisms of the In-situ Electrical Conductivity Measurements of Earth’s Interior Materials: A Case Study on Crustal Minerals
查看参考文献91篇
文摘
|
高温高压下矿物岩石电导率的实验研究数据,不仅是人们了解地球内部物质组成及其演化过程的重要窗口,而且可以为野外大地电磁测深和地磁测深反演提供重要约束。重点介绍了温度、压力、水含量、铁含量、氧逸度、熔融等矿物岩石电导率的影响因素,深入阐述了存在于矿物岩石的4种主要导电机制,即离子、质子、小极化子和大极化子。回顾近年来地壳主要造岩矿物(长石、石英和辉石)的电导率实验研究取得的新成果,讨论了它们的导电机制和地球物理意义,并对其目前存在的问题及尚需进一步展开的工作进行了探讨。 |
其他语种文摘
|
In-situ experimental measurements of the electrical conductivities of minerals and rocks under high temperature and high pressure are the important approaches to explore the chemical composition and evolution process of materials in Earth’s interior, as well as to interpret the inversion results of the magnetotelluric and geomagnetic deep sounding data. In this paper, above all, some crucial influence factors on the electrical properties of mineral and rock such as temperature, pressure, water content, iron content, oxygen fugacity and melting are described in detail. Secondly, four typical kinds of electrical conduction mechanisms of minerals and rocks are demonstrated (e. g. ion, proton, small polaron and large polaron) at high temperature and high pressure. Finally, conduction mechanisms and geophysical applications are discussed based on the recent research results of electrical conductivities for feldspar, quartz and pyroxene on the major rock-bearing minerals in the crust, and the present problems and future research work are discussed. |
来源
|
地球科学进展
,2013,28(4):455-466 【核心库】
|
关键词
|
矿物岩石
;
电导率
;
影响因素
;
导电机制
;
高温高压
|
地址
|
中国科学院地球化学研究所地球内部物质高温高压实验室, 贵州, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-8166 |
学科
|
地球物理学 |
基金
|
中国科学院地球化学研究所“135”项目
;
国家自然科学基金
|
文献收藏号
|
CSCD:4817058
|
参考文献 共
91
共5页
|
1.
Xu Y. The effect of alumina on the electrical conductivity of silicate perovskite.
Science,1998,282:922-924
|
CSCD被引
3
次
|
|
|
|
2.
Zhang B. Electrical conductivity of FeTiO_3 ilmenite at high temperature and high pressure.
Physical Review B,2006,73:134104
|
CSCD被引
1
次
|
|
|
|
3.
Poe B. Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa.
Physics of the Earth and Planetary Interiors,2010,181:103-111
|
CSCD被引
18
次
|
|
|
|
4.
Wu X. Electrical conductivity measurements of periclase under high pressure and high temperature.
Physica B,2010,405:53-56
|
CSCD被引
1
次
|
|
|
|
5.
Yang X. Effect of water on the electrical conductivity of lower crustal clinopyroxene.
Journal of Geophysical Research,2011,116:B04208
|
CSCD被引
5
次
|
|
|
|
6.
Huang Xiaogang. Progress of high temperature and high pressure experimental study on the electrical conductivity of the minerals and rocks.
Progress in Geophysics,2010,25:1247-1258
|
CSCD被引
1
次
|
|
|
|
7.
Yoshino T. Laboratory electrical conductivity measurement of mantle minerals.
Surveys in Geophysics,2010,31:163-206
|
CSCD被引
28
次
|
|
|
|
8.
Nover G. Electrical properties of crustal and mantle rocks-A review of laboratory measurements and their explanation.
Surveys in Geophysics,2005,26:593-651
|
CSCD被引
22
次
|
|
|
|
9.
Duba A. The electrical conductivity of Lherzolite.
Journal of Geophysical Research,1993,98:11885-11899
|
CSCD被引
5
次
|
|
|
|
10.
Dai L. Experimental study on the electrical conductivity of orthopyroxene at high temperature and high pressure under different oxygen fugacities.
Acta Geologica Sinica-English Edition,2005,79:803-809
|
CSCD被引
1
次
|
|
|
|
11.
Dai L. Experimental measurement of the electrical conductivity of single crystal olivine at high temperature and high pressure under different oxygen fugacities.
Progress in Natural Science,2006,16:387-393
|
CSCD被引
2
次
|
|
|
|
12.
Li Peng. Electrical conductivity of two-pyroxene granulite under high pressure in northern margin of North China craton.
Chinese Journal of Geophysics,2010,53:2386-2395
|
CSCD被引
1
次
|
|
|
|
13.
Maumus J. Electrical conductivity and partial melting of mafic rocks under pressure.
Geochimica et Cosmochimica Acta,2005,69:4703-4718
|
CSCD被引
9
次
|
|
|
|
14.
Bagdassarov N. Pressure dependence of Tg in silicate glasses from electrical impedance measurements.
Physics and Chemistry of Glasses,2004,45:197-214
|
CSCD被引
1
次
|
|
|
|
15.
Huang X. Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite.
Nature,2005,434:746-749
|
CSCD被引
30
次
|
|
|
|
16.
Shimojuku A. Electrical conductivity of fluid-bearing quartzite under lower crustal conditions.
Physics of the Earth and Planetary Interiors,2012,198/199:1-8
|
CSCD被引
10
次
|
|
|
|
17.
Gaillard F. Laboratory measurements of electrical conductivity of hydrous and dry silicic melts under pressure.
Earth and Planetary Science Letters,2004,218:215-228
|
CSCD被引
22
次
|
|
|
|
18.
Pommier A. Laboratory measurements of electrical conductivities of hydrous and dry Mount Vesuvius melts under pressure.
Journal of Geophysical Research,2008,113:B05205
|
CSCD被引
13
次
|
|
|
|
19.
Karato S. The role of hydrogen in the electrical conductivity of the upper mantle.
Nature,1990,347:272-273
|
CSCD被引
64
次
|
|
|
|
20.
Wang D. The effect of water on the electrical conductivity of olivine.
Nature,2006,443:977-980
|
CSCD被引
26
次
|
|
|
|
|