帮助 关于我们

返回检索结果

地球内部物质电学性质原位测量的影响因素和导电机制——以地壳矿物为例
Influential Factors and Conduction Mechanisms of the In-situ Electrical Conductivity Measurements of Earth’s Interior Materials: A Case Study on Crustal Minerals

查看参考文献91篇

文摘 高温高压下矿物岩石电导率的实验研究数据,不仅是人们了解地球内部物质组成及其演化过程的重要窗口,而且可以为野外大地电磁测深和地磁测深反演提供重要约束。重点介绍了温度、压力、水含量、铁含量、氧逸度、熔融等矿物岩石电导率的影响因素,深入阐述了存在于矿物岩石的4种主要导电机制,即离子、质子、小极化子和大极化子。回顾近年来地壳主要造岩矿物(长石、石英和辉石)的电导率实验研究取得的新成果,讨论了它们的导电机制和地球物理意义,并对其目前存在的问题及尚需进一步展开的工作进行了探讨。
其他语种文摘 In-situ experimental measurements of the electrical conductivities of minerals and rocks under high temperature and high pressure are the important approaches to explore the chemical composition and evolution process of materials in Earth’s interior, as well as to interpret the inversion results of the magnetotelluric and geomagnetic deep sounding data. In this paper, above all, some crucial influence factors on the electrical properties of mineral and rock such as temperature, pressure, water content, iron content, oxygen fugacity and melting are described in detail. Secondly, four typical kinds of electrical conduction mechanisms of minerals and rocks are demonstrated (e. g. ion, proton, small polaron and large polaron) at high temperature and high pressure. Finally, conduction mechanisms and geophysical applications are discussed based on the recent research results of electrical conductivities for feldspar, quartz and pyroxene on the major rock-bearing minerals in the crust, and the present problems and future research work are discussed.
来源 地球科学进展 ,2013,28(4):455-466 【核心库】
关键词 矿物岩石 ; 电导率 ; 影响因素 ; 导电机制 ; 高温高压
地址

中国科学院地球化学研究所地球内部物质高温高压实验室, 贵州, 贵阳, 550002

语种 中文
文献类型 综述型
ISSN 1001-8166
学科 地球物理学
基金 中国科学院地球化学研究所“135”项目 ;  国家自然科学基金
文献收藏号 CSCD:4817058

参考文献 共 91 共5页

1.  Xu Y. The effect of alumina on the electrical conductivity of silicate perovskite. Science,1998,282:922-924 CSCD被引 3    
2.  Zhang B. Electrical conductivity of FeTiO_3 ilmenite at high temperature and high pressure. Physical Review B,2006,73:134104 CSCD被引 1    
3.  Poe B. Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa. Physics of the Earth and Planetary Interiors,2010,181:103-111 CSCD被引 18    
4.  Wu X. Electrical conductivity measurements of periclase under high pressure and high temperature. Physica B,2010,405:53-56 CSCD被引 1    
5.  Yang X. Effect of water on the electrical conductivity of lower crustal clinopyroxene. Journal of Geophysical Research,2011,116:B04208 CSCD被引 5    
6.  Huang Xiaogang. Progress of high temperature and high pressure experimental study on the electrical conductivity of the minerals and rocks. Progress in Geophysics,2010,25:1247-1258 CSCD被引 1    
7.  Yoshino T. Laboratory electrical conductivity measurement of mantle minerals. Surveys in Geophysics,2010,31:163-206 CSCD被引 28    
8.  Nover G. Electrical properties of crustal and mantle rocks-A review of laboratory measurements and their explanation. Surveys in Geophysics,2005,26:593-651 CSCD被引 22    
9.  Duba A. The electrical conductivity of Lherzolite. Journal of Geophysical Research,1993,98:11885-11899 CSCD被引 5    
10.  Dai L. Experimental study on the electrical conductivity of orthopyroxene at high temperature and high pressure under different oxygen fugacities. Acta Geologica Sinica-English Edition,2005,79:803-809 CSCD被引 1    
11.  Dai L. Experimental measurement of the electrical conductivity of single crystal olivine at high temperature and high pressure under different oxygen fugacities. Progress in Natural Science,2006,16:387-393 CSCD被引 2    
12.  Li Peng. Electrical conductivity of two-pyroxene granulite under high pressure in northern margin of North China craton. Chinese Journal of Geophysics,2010,53:2386-2395 CSCD被引 1    
13.  Maumus J. Electrical conductivity and partial melting of mafic rocks under pressure. Geochimica et Cosmochimica Acta,2005,69:4703-4718 CSCD被引 9    
14.  Bagdassarov N. Pressure dependence of Tg in silicate glasses from electrical impedance measurements. Physics and Chemistry of Glasses,2004,45:197-214 CSCD被引 1    
15.  Huang X. Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature,2005,434:746-749 CSCD被引 30    
16.  Shimojuku A. Electrical conductivity of fluid-bearing quartzite under lower crustal conditions. Physics of the Earth and Planetary Interiors,2012,198/199:1-8 CSCD被引 10    
17.  Gaillard F. Laboratory measurements of electrical conductivity of hydrous and dry silicic melts under pressure. Earth and Planetary Science Letters,2004,218:215-228 CSCD被引 22    
18.  Pommier A. Laboratory measurements of electrical conductivities of hydrous and dry Mount Vesuvius melts under pressure. Journal of Geophysical Research,2008,113:B05205 CSCD被引 13    
19.  Karato S. The role of hydrogen in the electrical conductivity of the upper mantle. Nature,1990,347:272-273 CSCD被引 64    
20.  Wang D. The effect of water on the electrical conductivity of olivine. Nature,2006,443:977-980 CSCD被引 26    
引证文献 5

1 葛双超 复电阻率测量方法与模型仿真 地球科学进展,2014,29(11):1271-1276
CSCD被引 0 次

2 唐显春 青海共和盆地地热资源热源机制与聚热模式 地质学报,2020,94(7):2052-2065
CSCD被引 29

显示所有5篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号