来流作用下Al-Cu合金枝晶生长的数值模拟
Numerical Simulation of the Dendritic Growth in Al-Cu Alloy with Melt Convection by Using Cellular Automaton Model
查看参考文献16篇
文摘
|
应用三维元胞自动机模型,耦合求解三维流场控制方程,模拟了来流对Al-Cu合金三维树枝晶生长的影响。结果表明,在来流作用下,背流侧二次枝晶受到抑制,迎流侧二次枝晶发达,枝晶尖端生长速度随来流速度增大而增大,枝晶尖端半径随来流速度增大而减小;与来流方向垂直的枝晶向迎流方向偏转,枝晶尖端来流与背流两侧呈不对称性,随着来流速度增大枝晶尖端不对称性增强。迎流侧枝晶尖端Peclet数随着来流速度的增大而增大。 |
其他语种文摘
|
The three-dimensional (3-D) cellular automaton model is coupled with the numerical solution of momentum to simulate the dendrite growth of Al-Cu alloy in the presence of melt flow. The results show that growth of primary and secondary arm in the upstream direction is much greater than that in the downstream direction. With the increase of the flow velocity, the growth velocity of the upstream dendrite tip is increased, and the radius of upstream dendrite tip is decreased. The growth direction of the primary arm perpendicular to the flow direction tilts into the upstream direction. The dendrite tip of the primary arm perpendicular to the flow direction shows an asymmetric morphology in downstream sides. The degree of tilt and the asymmetry of the tip become stronger with the increase of the forced flow velocity. The Peclet number of the upstream dendrite tip is increased with the increase of the forced flow velocity. |
来源
|
特种铸造及有色合金
,2013,33(4):323-327 【核心库】
|
关键词
|
树枝晶
;
三维元胞自动机
;
流动
|
地址
|
1.
沈阳理工大学材料科学与工程学院
2.
中国科学院金属研究所
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-2249 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:4816929
|
参考文献 共
16
共1页
|
1.
Dantzig J A.
Solidification,2009
|
CSCD被引
12
次
|
|
|
|
2.
Tong X. Velocity and shape selection of dendritic crystals in a forced flow.
Phys.Rev, E,2000,61(1):R49-R61
|
CSCD被引
37
次
|
|
|
|
3.
Tonhardt R. Dendritic growth of randomly oriented nuclei in a shear flow.
J.Cryst.Growth,2000,213:161-187
|
CSCD被引
18
次
|
|
|
|
4.
Jeong J H. Phase field model for three-dimensional dendritic growth with fluid flow.
Phys. Rev, E,2001,64:041602
|
CSCD被引
24
次
|
|
|
|
5.
Zhu M F. Modified cellular automaton model for the prediction of dendritic growth with melt convection.
Phys.Rev, E,2004,69:061610
|
CSCD被引
37
次
|
|
|
|
6.
Yuan L. Dendritic solidification under natural and forced convection in binary alloys:2Dversus 3Dsimulation.
Modelling Simul.Mater.Sci.Eng,2010,18:055008
|
CSCD被引
15
次
|
|
|
|
7.
陈玉娟. 强迫对流下各相场参数对枝晶生长的影响.
特种铸造及有色合金,2008,28(7):513-515
|
CSCD被引
2
次
|
|
|
|
8.
吕冬兰. 强迫对流影响合金凝固过程枝晶生长的数值模拟.
特种铸造及有色合金,2009,29(11):1012-1015
|
CSCD被引
3
次
|
|
|
|
9.
Chen C C. Efficient adaptive three-dimensional phase field simulation of free dendritic growth under natural convection.
J.Cryst.Growth,2010,312:1437-1442
|
CSCD被引
3
次
|
|
|
|
10.
石玉峰. 对流作用下枝晶形貌演化的数值模拟和实验研究.
物理学报,2011,60:126101
|
CSCD被引
6
次
|
|
|
|
11.
Zhang X F. A three-dimensional cellular automaton model for dendritic growth in multi-component alloys.
Acta Mater,2012,60:2249-2257
|
CSCD被引
16
次
|
|
|
|
12.
Gurevich S. Phase-field study of three-dimensional steady-state growth shapes in directional solidification.
Phys.Rev, E,2010,81:011603
|
CSCD被引
10
次
|
|
|
|
13.
Nastac L. Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys.
Acta Mater,1999,47(17):4253-4262
|
CSCD被引
109
次
|
|
|
|
14.
Beltran-Sanchez L. A quantitative dendrite growth model and analysis of stability concepts.
Metall. Mater.Trans, A,2004,35(8):2471-2485
|
CSCD被引
54
次
|
|
|
|
15.
Lipton J. Dendritic growth into undercooled alloy melts.
Mater.Sci.Eng,1984,65:57-63
|
CSCD被引
47
次
|
|
|
|
16.
Bouissou P. Effect of a forced flow on dendritic growth.
Phys.Rev, A,1989,40:6673-6680
|
CSCD被引
7
次
|
|
|
|
|