Prediction of mechanical properties of A357 alloy using artificial neural network
基于人工神经网络的A357合金力学性能预测
查看参考文献20篇
文摘
|
The workpieces of A357 alloy were routinely heat treated to the T6 state in order to gain an adequate mechanical property. The mechanical properties of these workpieces depend mainly on solid-solution-temperature, solid-solution time, artificial aging temperature and artificial aging time. An artificial neural network (ANN) model with a back-propagation (BP) algorithm was used to predict mechanical properties of A357 alloy, and the effects of heat treatment processes on mechanical behavior of this alloy were studied. The results show that this BP model is able to predict the mechanical properties with a high accuracy. This model was used to reflect-the-influence-of heat treatments on-the-mechanical-properties of A357 alloy. Isograms of ultimate tensile strength and elongation were drawn in the same picture, which are very helpful to understand the relationship among aging parameters, ultimate tensile strength and elongation. |
其他语种文摘
|
A357铝合金零件一般都需要经过热处理(T6状态)以获得优异的力学性能。这类零件的性能取决于固溶温度、固溶时间、人工时效温度及人工时效时间。在本研究中,建立了基于反向传播(BP)算法的人工神经网络(ANN)模型,对A357合金的力学性能进行预测,研究了热处理工艺对该合金性能的影响。结果表明,所建立的BP模型能够对A357合金的力学性能进行有效且精度高的预测。良好的神经网络预测能力能够直观地反映A357合金的热处理工艺参数对其力学性能的影响。绘制抗拉强度和伸长率的等值线图形有助于清晰地找到抗拉强度和伸长率之间的关系,可为实际生产中热处理工艺参数的选择提供技术支持。 |
来源
|
Transactions of Nonferrous Metals Society of China
,2013,23(3):788-795 【核心库】
|
DOI
|
10.1016/s1003-6326(13)62530-3
|
关键词
|
A357 alloy
;
mechanical properties
;
artificial neural network
;
heat treatment parameters
|
地址
|
1.
School of Materials Science and Engineering,Harbin Institute of Technology, National Key Laboratory for Precision Hot Processing of Metals, Harbin, 150001
2.
Beijing Hangxing Machine Manufacturing Company, Beijing, 100013
3.
Physical Test Centre,Shenyang Aircraft Corporation, Shenyang, 110034
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1003-6326 |
学科
|
金属学与金属工艺;自动化技术、计算机技术 |
文献收藏号
|
CSCD:4809895
|
参考文献 共
20
共1页
|
1.
Kumar G. Heat transfer and solidification behavior of modified A357 alloy.
J Mater Process Technol,2007,182(1/3):152-156
|
CSCD被引
6
次
|
|
|
|
2.
Alexopoulos N D. Quality evaluation of A357 cast aluminum alloy specimens subjected to different artificial aging treatment.
Mater Des,2004,25(5):419-430
|
CSCD被引
13
次
|
|
|
|
3.
Ceschini L. Correlation between ultimate tensile strength and solidification microstructure for the sand cast A357 aluminum alloy.
Mater Des,2009,30(10):4525-4531
|
CSCD被引
14
次
|
|
|
|
4.
Es-Said O S. Alternative heat treatments for A357-T6 aluminum alloy.
Eng Fail Anal,2002,9(1):99-107
|
CSCD被引
6
次
|
|
|
|
5.
Rometsch P A. An age hardening model for Al-7Si-Mg casting alloys.
Mater Sci Eng A,2002,325(1/2):424-434
|
CSCD被引
7
次
|
|
|
|
6.
Forouzan S. Prediction of effect of thermo-mechanical parameters on mechanical properties and anisotropy of aluminum alloy AA3004 using artificial neural network.
Mater Des,2007,28(5):1678-1684
|
CSCD被引
2
次
|
|
|
|
7.
Malinov S. Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network.
Comput Mat Sci,2001,21(3):375-394
|
CSCD被引
41
次
|
|
|
|
8.
Yu W X. Prediction of the mechanical properties of the post-forged Ti-6Al-4V alloy using fuzzy neural network.
Mater Des,2010,31(7):3282-3288
|
CSCD被引
7
次
|
|
|
|
9.
.
'Standard test methods for tension testing of metallic materials', ASTM International Standard E8M-04,2004:1-24
|
CSCD被引
1
次
|
|
|
|
10.
Bose N K.
Neural network fundamentals with graphs, algorithms and applications,1998:102-120
|
CSCD被引
1
次
|
|
|
|
11.
Mehrotra K.
Elements of artificial neural networks,1996:56-64
|
CSCD被引
1
次
|
|
|
|
12.
Lippmann R P. An introduction to computing with neural nets.
IEEE ASSP Magazine,1987,4:4-22
|
CSCD被引
81
次
|
|
|
|
13.
Zurada J.
Introduction to arti-cial neural systems,1992:75-95
|
CSCD被引
1
次
|
|
|
|
14.
Dayhoff J E.
Neural network architectures: An introduction,1990:105-114
|
CSCD被引
1
次
|
|
|
|
15.
Demuth H.
Neural network toolbox user's guide,2000:135-143
|
CSCD被引
1
次
|
|
|
|
16.
Almeida L M. A multi-objective memetic and hybrid methodology for optimizing the parameters and performance of artificial neural networks.
Neurocomputing,2010,73(7/9):1438-1450
|
CSCD被引
3
次
|
|
|
|
17.
Feng L H. The practical research on flood forecasting based on artificial neural networks.
Expert Syst Appl,2010,37(4):2974-2977
|
CSCD被引
3
次
|
|
|
|
18.
Ahmad J S. ANN constitutive model for high strain-rate deformation of Al 7075-T6.
J Mater Process Technol,2007,186(1/3):339-345
|
CSCD被引
6
次
|
|
|
|
19.
Kanti K M. Prediction of bead geometry in pulsed GMA welding using back propagation neural network.
J Mater Process Technol,2008,200(1/3):300-305
|
CSCD被引
12
次
|
|
|
|
20.
Apelian D. Fundamental aspects of heat treatment of cast Al-Si-Mg alloys.
AFS Trans,1989,137:730-734
|
CSCD被引
1
次
|
|
|
|
|