帮助 关于我们

返回检索结果

Prediction of mechanical properties of A357 alloy using artificial neural network
基于人工神经网络的A357合金力学性能预测

查看参考文献20篇

文摘 The workpieces of A357 alloy were routinely heat treated to the T6 state in order to gain an adequate mechanical property. The mechanical properties of these workpieces depend mainly on solid-solution-temperature, solid-solution time, artificial aging temperature and artificial aging time. An artificial neural network (ANN) model with a back-propagation (BP) algorithm was used to predict mechanical properties of A357 alloy, and the effects of heat treatment processes on mechanical behavior of this alloy were studied. The results show that this BP model is able to predict the mechanical properties with a high accuracy. This model was used to reflect-the-influence-of heat treatments on-the-mechanical-properties of A357 alloy. Isograms of ultimate tensile strength and elongation were drawn in the same picture, which are very helpful to understand the relationship among aging parameters, ultimate tensile strength and elongation.
其他语种文摘 A357铝合金零件一般都需要经过热处理(T6状态)以获得优异的力学性能。这类零件的性能取决于固溶温度、固溶时间、人工时效温度及人工时效时间。在本研究中,建立了基于反向传播(BP)算法的人工神经网络(ANN)模型,对A357合金的力学性能进行预测,研究了热处理工艺对该合金性能的影响。结果表明,所建立的BP模型能够对A357合金的力学性能进行有效且精度高的预测。良好的神经网络预测能力能够直观地反映A357合金的热处理工艺参数对其力学性能的影响。绘制抗拉强度和伸长率的等值线图形有助于清晰地找到抗拉强度和伸长率之间的关系,可为实际生产中热处理工艺参数的选择提供技术支持。
来源 Transactions of Nonferrous Metals Society of China ,2013,23(3):788-795 【核心库】
DOI 10.1016/s1003-6326(13)62530-3
关键词 A357 alloy ; mechanical properties ; artificial neural network ; heat treatment parameters
地址

1. School of Materials Science and Engineering,Harbin Institute of Technology, National Key Laboratory for Precision Hot Processing of Metals, Harbin, 150001  

2. Beijing Hangxing Machine Manufacturing Company, Beijing, 100013  

3. Physical Test Centre,Shenyang Aircraft Corporation, Shenyang, 110034

语种 英文
文献类型 研究性论文
ISSN 1003-6326
学科 金属学与金属工艺;自动化技术、计算机技术
文献收藏号 CSCD:4809895

参考文献 共 20 共1页

1.  Kumar G. Heat transfer and solidification behavior of modified A357 alloy. J Mater Process Technol,2007,182(1/3):152-156 CSCD被引 6    
2.  Alexopoulos N D. Quality evaluation of A357 cast aluminum alloy specimens subjected to different artificial aging treatment. Mater Des,2004,25(5):419-430 CSCD被引 13    
3.  Ceschini L. Correlation between ultimate tensile strength and solidification microstructure for the sand cast A357 aluminum alloy. Mater Des,2009,30(10):4525-4531 CSCD被引 14    
4.  Es-Said O S. Alternative heat treatments for A357-T6 aluminum alloy. Eng Fail Anal,2002,9(1):99-107 CSCD被引 6    
5.  Rometsch P A. An age hardening model for Al-7Si-Mg casting alloys. Mater Sci Eng A,2002,325(1/2):424-434 CSCD被引 7    
6.  Forouzan S. Prediction of effect of thermo-mechanical parameters on mechanical properties and anisotropy of aluminum alloy AA3004 using artificial neural network. Mater Des,2007,28(5):1678-1684 CSCD被引 2    
7.  Malinov S. Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network. Comput Mat Sci,2001,21(3):375-394 CSCD被引 41    
8.  Yu W X. Prediction of the mechanical properties of the post-forged Ti-6Al-4V alloy using fuzzy neural network. Mater Des,2010,31(7):3282-3288 CSCD被引 7    
9.  . 'Standard test methods for tension testing of metallic materials', ASTM International Standard E8M-04,2004:1-24 CSCD被引 1    
10.  Bose N K. Neural network fundamentals with graphs, algorithms and applications,1998:102-120 CSCD被引 1    
11.  Mehrotra K. Elements of artificial neural networks,1996:56-64 CSCD被引 1    
12.  Lippmann R P. An introduction to computing with neural nets. IEEE ASSP Magazine,1987,4:4-22 CSCD被引 81    
13.  Zurada J. Introduction to arti-cial neural systems,1992:75-95 CSCD被引 1    
14.  Dayhoff J E. Neural network architectures: An introduction,1990:105-114 CSCD被引 1    
15.  Demuth H. Neural network toolbox user's guide,2000:135-143 CSCD被引 1    
16.  Almeida L M. A multi-objective memetic and hybrid methodology for optimizing the parameters and performance of artificial neural networks. Neurocomputing,2010,73(7/9):1438-1450 CSCD被引 3    
17.  Feng L H. The practical research on flood forecasting based on artificial neural networks. Expert Syst Appl,2010,37(4):2974-2977 CSCD被引 3    
18.  Ahmad J S. ANN constitutive model for high strain-rate deformation of Al 7075-T6. J Mater Process Technol,2007,186(1/3):339-345 CSCD被引 6    
19.  Kanti K M. Prediction of bead geometry in pulsed GMA welding using back propagation neural network. J Mater Process Technol,2008,200(1/3):300-305 CSCD被引 12    
20.  Apelian D. Fundamental aspects of heat treatment of cast Al-Si-Mg alloys. AFS Trans,1989,137:730-734 CSCD被引 1    
引证文献 9

1 Li Ruidi Recovery of indium by acid leaching waste ITO target based on neural network Transactions of Nonferrous Metals Society of China,2014,24(1):257-262
CSCD被引 4

2 刘英莉 BP神经网络在铝合金性能优化中的研究进展 材料科学与工程学报,2014,32(1):142-147,153
CSCD被引 1

显示所有9篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号