帮助 关于我们

返回检索结果

COMPLEX CONCEPT LATTICES FOR SIMULATING HUMAN PREDICTION IN SPORT

查看参考文献26篇

文摘 In order to address the study of complex systems,the detection of patterns in their dynamics could play a key role in understanding their evolution. In particular,global patterns are required to detect emergent concepts and trends,some of them of a qualitative nature. Formal concept analysis (FCA) is a theory whose goal is to discover and extract knowledge from qualitative data (organized in concept lattices). In complex environments,such as sport competitions,the large amount of information currently available turns concept lattices into complex networks. The authors analyze how to apply FCA reasoning in order to increase confidence in sports predictions by means of detecting regularities from data through the management of intuitive and natural attributes extracted from publicly available information. The complexity of concept lattices-considered as networks with complex topological structure- is analyzed. It is applied to building a knowledge based system for confidence-based reasoning,which simulates how humans tend to avoid the complexity of concept networks by means of bounded reasoning skills.
来源 Journal of Systems Science and Complexity ,2013,26(1):117-136 【核心库】
DOI 10.1007/s11424-013-2288-x
关键词 Bounded rationality ; complex networks ; formal concept analysis ; sport forecasting
地址

1. Universidad de Huelva. Department of Information Technology, Spain, Palos de La Frontera s/n, 21819  

2. Universidad de Sevilla. Department of Computer Science and Artificial Intelligence, Spain, Avda. Reina Mercedes s/n, 41012

语种 英文
文献类型 研究性论文
ISSN 1009-6124
学科 数学
基金 supported by the the Spanish Ministry of Science and Innovation ;  Excellence project of Junta de Andalucia co-financed by FEDER funds
文献收藏号 CSCD:4803760

参考文献 共 26 共2页

1.  . Why Spain will win... Engineering & Technology,2010 CSCD被引 1    
2.  Andersson P. Forecasting outcomes of the World Cup 2006 in football: Performance and confidence of bettors and laypeople. Psychology of Sport & Exercise,2009,10(1):116-123 CSCD被引 1    
3.  Schumaker R P. Sports data mining. Integrated Series in Information Systems,2010,26:55-63 CSCD被引 1    
4.  Vlastakis N. How efficient is the European football betting market? Evidence from arbitrage and trading strategies. Journal of Forecasting,2009,28(5):426-444 CSCD被引 1    
5.  Ganter B. Formal Concept Analysis - Mathematical Foundations,1999 CSCD被引 2    
6.  Aranda-Corral G A. Confidence-based reasoning with local temporal formal contexts. Lecture Notes in Computer Science,2011,6692:461-468 CSCD被引 1    
7.  Carling C. Handbook of Soccer Match Analysis,2005 CSCD被引 1    
8.  Oberstone J. Differentiating the top English premier league football clubs from the rest of the pack: Identifying the keys to success. Journal of Quantitative Analysis in Sports,2009,5(3):Article 10 CSCD被引 1    
9.  Goldstein D G. Fast and frugal forecasting. Int. J. of Forecasting,2009,25(4):760-772 CSCD被引 2    
10.  Goldstein D G. Models of ecological rationality: The recognition heuristic. Psychological Review,2002,109(1):75-90 CSCD被引 15    
11.  Min B. A compound framework for sports results prediction: A football case study. Know. Based Syst,2008,21(7):551-562 CSCD被引 2    
12.  Imberman S P. Using booleanized data to discover better relationships between metrics. Proc. Int. CMG Conference,1999:530-539 CSCD被引 1    
13.  Aranda-Corral G A. Bounded rationality for data reasoning based on formal concept analysis. Proc. Int. Workshop on Database and Expert Systems Applications,2011:350-354 CSCD被引 1    
14.  Simon H A. Models of Bounded Rationality,1982 CSCD被引 8    
15.  Andersson P. Forecasting the fast and frugal way: A study of performance and information-processing strategies of experts and non-experts when predicting the World Cup 2002 in soccer, Working Paper Series in Business Administration. 9 Stockholm School of Economics,2003 CSCD被引 1    
16.  Guigues V. Familles minimales d' implications informatives resultant d'un tableau de donnees binaires. Math. Sci. Humaines,1986,95:5-18 CSCD被引 1    
17.  Aranda-Corral G A. Reconciling knowledge in social tagging web services. Lecture Notes in Artificial Intelligence,2010,6077:383-390 CSCD被引 1    
18.  Balcazar J L. Redundancy, deduction schemes, and minimum-size bases for association rules. Logical Methods in Computer Science,2010,6(2):1-23 CSCD被引 2    
19.  Giarratano J C. Expert Systems: Principles and Programming,2005 CSCD被引 2    
20.  Motter A E. Topology of the conceptual network of language. Physical Review E,2002,65(6):065102 CSCD被引 141    
引证文献 1

1 Merelo Juan Julian COMPLEX SYSTEMS IN SPORTS: INTRODUCTION TO THE SPECIAL ISSUE Journal of Systems Science and Complexity,2013,26(1):1-3
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号