汞甲基化细菌研究进展
Mercury methylation bacteria and methyl mercury producing: A review
查看参考文献54篇
文摘
|
汞甲基化细菌在厌氧条件下将无机汞(Hg)转化成最高毒性的甲基汞(MeHg),通过生物富集以及在食物链中的生物放大造成人类甲基汞暴露。本文综述了水环境中汞甲基化细菌的种类、系统发生、甲基化机理、甲基汞生成的空间位置和影响因素。水环境中汞甲基化主要发生在海洋、海湾、河流和湖泊的厌氧沉积物中。硫酸盐还原菌和铁还原菌是主要的汞甲基化细菌,它们的种类、群落结构和分布制约了甲基汞的生成,从而影响人体健康。汞甲基化的生化机理的研究表明,甲基汞可能产生于不同的代谢途径,但是对于汞甲基化机理仍没有一致的认识。沉积物中汞甲基化细菌的分布影响甲基汞生成的空间位置和甲基化率。因此,水环境中的地球化学因素影响甲基化细菌的分布、甲基化率和甲基汞的生成。 |
其他语种文摘
|
Mercury methylation bacteria change inorganic mercury to the highest toxic methylmercury (MeHg) under anaerobic conditions,which can result the human’s MeHg exposure by bioaccumulation and biomagnification. This article reviews the species and phylogeny of mercury methylation bacteria,methylation mechanism,spatial location of MeHg producing and the affecting factors in aquatic environments. In aquatic environments,mercury methylation occurs mainly in the anaerobic sediments of oceans,estuaries,rivers and lakes. Sulfate-reducing bacteria (SRB) and iron-reducing bacteria (IRB) are the main methylation bacteria. Their species, community structure and distribution control MeHg production and effects to human health. The studies on the biochemical mechanisms of mercury methylation show that MeHg may be produced from different metabolism pathways,but there still exist no consistent conclusions on mercury methylation mechanism. Spatial distribution of MeHg producing in sediments and the rate of mercury methylation are controlled by the distribution of mercury methylation bacteria,therefore the geochemical factors in aquatic environments affect the distribution of methylation bacteria,methylation rate and MeHg producing. |
来源
|
生态学杂志
,2013,32(3):755-761 【核心库】
|
关键词
|
甲基化细菌
;
甲基汞
;
硫酸盐还原菌
;
铁还原菌
;
系统发生
|
地址
|
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1000-4890 |
学科
|
微生物学 |
基金
|
中国科学院国际合作局中俄合作项目
;
国家973计划
|
文献收藏号
|
CSCD:4798374
|
参考文献 共
54
共3页
|
1.
Acha D. Importance of sulfate reducing bacteria in mercury methylation and demethylation in periphyton from Bolivian Amazon region.
Chemosphere,2011,82:911-916
|
CSCD被引
10
次
|
|
|
|
2.
Avramescu M L. Biogeochemical factors influencing net mercury methylation in contaminated freshwater sediments from the St. Lawrence River in Cornwall,Ontario,Canada.
Science of the Total Environment,2011,409:968-978
|
CSCD被引
11
次
|
|
|
|
3.
Barkay T. Effects of dissolved organic carbon and salinity on bioavailability of mercury.
Applied and Environmental Microbiology,1997,63:4267-4271
|
CSCD被引
26
次
|
|
|
|
4.
Benoit J M. Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore water.
Environmental Science & Technology,1999,33:951-957
|
CSCD被引
26
次
|
|
|
|
5.
Biswas A. Bacterial growth phase influences methylmercury production by the sulfate-reducing bacterium Desulfovibrio desulfuricans ND132.
Science of the Total Environment,2011,409:3943-3948
|
CSCD被引
4
次
|
|
|
|
6.
Bridou R. Simultaneous determination of mercury methylation and demethylation capacities of various sulfate-reducing bacteria using speciesspecific isotopic tracers.
Environmental Toxicology & Chemistry,2011,30:337-344
|
CSCD被引
9
次
|
|
|
|
7.
Brown S D. Genome sequence of the mercury-methylating strain Desulfovibrio desulfuricans ND132.
Journal of Bacteriology,2011,193:2078-2079
|
CSCD被引
4
次
|
|
|
|
8.
Brown S D. Genome sequence of the mercury-methylating and pleomorphic Desulfovibrio africanus strain Walvis Bay.
Journal of Bacteriology,2011,193:4037-4038
|
CSCD被引
1
次
|
|
|
|
9.
Bryukhanov A L. Investigation of the sulfate-reducing bacterial community in the aerobic water and chemocline zone of the Black Sea by the FISH technique.
Microbiology,2011,80:108-116
|
CSCD被引
1
次
|
|
|
|
10.
Choi S C. Cobalamin-mediated mercury methylation by Desulfovibrio Desulfuricans LS.
Applied and Environmental Microbiology,1993,59:290-295
|
CSCD被引
8
次
|
|
|
|
11.
Choi S C. Environmental factors affecting mercury methylation in estuarine sediments.
Bulletin of Environmental Contamination and Toxicology,1994,53:805-812
|
CSCD被引
4
次
|
|
|
|
12.
Choi S C. Metabolic pathways leading to mercury methylation in Desulfovibrio desulfuricans LS.
Applied and Environmental Microbiology,1994,60:4072-4077
|
CSCD被引
15
次
|
|
|
|
13.
Choi S C. Enzymatic catalysis of mercury methylation by Desulfovibrio desulfuricans LS.
Applied and Environmental Microbiology,1994,60:1342-1346
|
CSCD被引
11
次
|
|
|
|
14.
Daly K. Development of oligonucleotide probes and PCR primers for detecting phylogenetic subgroups of sulfate-reducing bacteria.
Microbiology,2000,146:1693-1705
|
CSCD被引
6
次
|
|
|
|
15.
Dong W. Roles of dissolved organic matter in the speciation of mercury and methylmercury in a contaminated ecosystem in Oak Ridge,Tennessee.
Environmental Chemistry,2010,7:94-102
|
CSCD被引
3
次
|
|
|
|
16.
Drott A. Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments.
Environmental Science & Technology,2007,41:2270-2276
|
CSCD被引
7
次
|
|
|
|
17.
Ekstrom E B. Cobalt limitation of growth and mercury methylation in sulfate-reducing bacteria.
Environmental Science & Technology,2008,42:93-99
|
CSCD被引
7
次
|
|
|
|
18.
Ekstrom E B. Mercury methylation independent of the acetyl-coenzyme a pathway in sulfatereducing bacteria.
Applied and Environmental Microbiology,2003,69:5414-5422
|
CSCD被引
16
次
|
|
|
|
19.
Feng X. Mercury speciation and distribution in Aha Reservoir which was contaminated by coal mining activities in Guiyang,Guizhou,China.
Applied Geochemistry,2011,26:213-221
|
CSCD被引
5
次
|
|
|
|
20.
Feng X. Geochemical processes of mercury in Wujiangdu and Dongfeng reservoirs,Guizhou, China.
Environmental Pollution,2009,157:2970-2984
|
CSCD被引
7
次
|
|
|
|
|