高超声速飞行器上壁面多目标优化及性能分析
MULTI-OBJECTIVE OPTIMIZATION AND AERODYNAMIC PERFORMANCE ANALYSIS OF THE UPPER SURFACE FOR HYPERSONIC VEHICLES
查看参考文献17篇
文摘
|
为分析小攻角巡航条件下吸气式高超声速飞行器上壁面的变化对其气动性能和容积的影响,以参数化后的飞行器上壁面对称面型线为设计变量,在飞行马赫数6.5,飞行高度27 km,飞行攻角为4°的条件下,采用计算流体力学为性能分析工具,Pareto多目标遗传算法为优化设计方法,开展了二维条件下的升阻比/容积双目标优化设计.在此基础上,选择典型的二维优化结果,重构生成对应的三维构型并进行数值分析,获得了飞行器气动性能和容积间的相互关系.结果表明在巡航条件下,尽管二维/三维条件下飞行器的气动参数数值有较大差别,但在这2种条件下,飞行器的升阻比和容积间的关系均近似呈线性反比例关系.同时,对于三维构型而言,在给定容积不变的条件下,通过改变上壁面对称面型线的形状仅能使升阻比获得较小的增量(约0.36%).相比之下,当给定升阻比基本不变的条件下,飞行器容积可调空间相对较大,约为1.93%.此外,计算结果还表明,在飞行器的容积基本不变情况下,通过调节上壁面对称面型线,可使飞行器的俯仰力矩获得5%左右的调节空间,且其升阻比基本不变. |
其他语种文摘
|
To aim at analyzing the variation of the aerodynamic performance as well as the volume of hypersonic vehicles caused by the modification of the upper surface, a two-dimensional multi-objective optimization study is carried out by considering the design condition of flight Mach number 6.5, flight altitude 27 km, and 4° flight angle of attack. The CFD-embedded pareto genetic algorithm is used as the optimization driver. On the basis of 2D optimization results, several typical 3D configurations are generated, and a primary relationship between the aerodynamic performance and the volume is obtained by numerical simulation. The results show that the lift-to-drag ratio is approximately linear inverse proportion to the volume for both two-dimensional and three-dimensional configurations, though there are significant differences between the 2D and 3D aerodynamic coefficient values. Moreover, the lift-to-drag ratio can only gain a little increment (about 0.36%) by adjusting the symmetrical profile shape of the upper surface when the volume is a constant, while the volume has a relatively large adjustable range (about 1.93%) under the condition of fixing the lift-to-drag ratio. Besides, the numerical results also demonstrate that the adjustment range of the pitch moment of the vehicle is about 5% by modifying the shape of the upper surface when the lift-to-drag ratio and the volume are all fixed simultaneously. |
来源
|
力学学报
,2013,45(2):193-201 【核心库】
|
DOI
|
10.6052/0459-1879-12-227
|
关键词
|
高超声速
;
遗传算法
;
机体容积
;
升阻比
;
计算流体力学
|
地址
|
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
力学;航空 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:4798143
|
参考文献 共
17
共1页
|
1.
Mcclinton C R. Hyper-X: Foundation for future hypersonic launch veicles.
Acta Astronautica,2005,57:614-622
|
CSCD被引
8
次
|
|
|
|
2.
Joseph M H.
The X-51A scramjet engine flight demonstration program. AIAA Paper 2008-2540:2008
|
CSCD被引
1
次
|
|
|
|
3.
Hirschel E H. Design of hypersonic flight vehiclessome lessons from the past and future challenges.
CEAS Space Journal,2011,1:3-22
|
CSCD被引
3
次
|
|
|
|
4.
Sobieczky H.
Generic supersonic and hypersonic configurations. AIAA Paper 91-3301:1991
|
CSCD被引
1
次
|
|
|
|
5.
Starkey R P. Critical design issues for airbreathing hypersonic waverider missiles.
Journal of Spacecraft and Rockets,2001,38(4):510-519
|
CSCD被引
9
次
|
|
|
|
6.
Hagenmaier M A.
Scramjet component optimization using CFD and design of experiments. AIAA Paper 2002-0544:2002
|
CSCD被引
1
次
|
|
|
|
7.
Lewis M J.
A hypersonic propulsion airframe integration overview. AIAA Paper 2003-4405:2003
|
CSCD被引
1
次
|
|
|
|
8.
Kevin G B.
Advancements in multidis-ciplinary design optimization applied to hypersonic vehicles to achieve closure. AIAA Paper 2008-2591:2008
|
CSCD被引
1
次
|
|
|
|
9.
Sun Q.
Configuration optimization of hypersonic vehicles under transitional flow conditions. AIAA Paper 2009-7229:2009
|
CSCD被引
1
次
|
|
|
|
10.
Vivek A.
Optimization of air-breathing hypersonic aircraft design for maximum cruise speeds using genetic algorithms. AIAA Paper 2009-7323:2009
|
CSCD被引
1
次
|
|
|
|
11.
Ueno A.
CFD-based shape optimization of hypersonic vehicles considering transonic aerodynamic performance. AIAA Paper 2008-288:2008
|
CSCD被引
1
次
|
|
|
|
12.
Ueno A. Aerodynamic shape optimization of hypersonic airliners considering multi-design-point.
Proc. of, 27th congress of international council of the aeronautical sciences. Paper ICAS 2010-2.8.3,2010
|
CSCD被引
1
次
|
|
|
|
13.
Horn J. A niched Pareto genetic algorithm for multi-objective optimization.
Proceedings of the first IEEE conference on evolutionary computation. 1,1994:82-87
|
CSCD被引
44
次
|
|
|
|
14.
Che J. Research on integrated optimization design of hyper-sonic cruise vehicle.
Aerospace Science and Technology,2008,12:567-572
|
CSCD被引
6
次
|
|
|
|
15.
Cai X J. Multiobjective fault detection and isolation for flexible air-breathing hypersonic vehicle.
Journal of Systems Engineering and Electronics,2011,22(1):52-62
|
CSCD被引
6
次
|
|
|
|
16.
Kristian A.
Geometry based design automation applied to aircraft modeling and optimization,2012
|
CSCD被引
1
次
|
|
|
|
17.
Ahmed M Y M. Recent advances in the aerothermodynam-ics of spiked hypersonic vehicles.
Progress in Aerospace Sciences,2011,47:425-449
|
CSCD被引
18
次
|
|
|
|
|