真实比热模型中铝粉尘两相爆轰波的数值研究
Realistic Heat Capacity Effects in Two Phase Aluminum Dust Detonations
查看参考文献15篇
文摘
|
采用多流体模型对铝粉尘两相爆轰波进行数值模拟,研究颗粒能量计算方法对起爆和传播过程的影响.以前的固相颗粒能量的计算一般采用固定比热方法,本文采用随温度变化的真实比热.由于铝颗粒及其产物氧化铝的比热变化很大,模拟得到的爆轰波的速度、压力和波后参数变化和采用固定比热存在较大的差异.变比热计算得到的爆轰波压力、传播速度和实验结果更加接近,而固定比热的计算方法会对这些参数造成高估.对爆轰波的形成进行研究,发现起爆距离主要受起爆能量影响,但是相对于固定比热模型,采用变比热模型得到的起爆距离较短. |
其他语种文摘
|
Two phase detonations of aluminum dust are simulated in a multi-fluid model to study particle energy calculation methods. In previous studies heat capacities of solid particles are constants, while realistic heat capacities change with temperature. In this simulation, effects of realistic heat capacities are studied. Numerical results show that detonation parameters are influenced significantly. The results with realistic capacities are close to experiments, while the results with fixed capacities overestimate pressure and detonation velocity. In detonation initiation, run-up distance is mainly decide by ignition energy, while realistic effect makes the distance shorter than that in the fixed heat capacity case. |
来源
|
计算物理
,2013,30(1):44-52 【核心库】
|
关键词
|
气固两相
;
爆轰波
;
铝粉尘
;
比热
|
地址
|
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-246X |
学科
|
力学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:4783644
|
参考文献 共
15
共1页
|
1.
Tulis A J. Detonation tube studies of aluminum particles dispersed in air.
Symposium (International) on Combustion,1982,19(1):655-663
|
CSCD被引
3
次
|
|
|
|
2.
Borisov A A. Dynamic structure of detonation in gaseous and dispersed media.
On the detonation of aluminum suspensions in air and in oxygen,1991:215-253
|
CSCD被引
1
次
|
|
|
|
3.
Zhang F. DDT and detonationwaves in dust-air mixtures.
Shock Waves,2001,11(1):53-71
|
CSCD被引
7
次
|
|
|
|
4.
Benkiewicz K. Two-dimensional numerical simulations of multi-headed detonations in oxygen-aluminum mixtures using an adaptive mesh refinement.
Shock Waves,2003,13(5):385-402
|
CSCD被引
4
次
|
|
|
|
5.
Fedorov A V. Shock and detonation wave diffraction at a sudden expansion in gas-particle mixtures.
Shock Waves,2008,18(4):281-290
|
CSCD被引
1
次
|
|
|
|
6.
Hong Tao. Numerical simulation of dust detonation of aluminum powder in explosive tubes.
Explosion and Shock Waves,2004,24(3):193-200
|
CSCD被引
2
次
|
|
|
|
7.
Yan Chao. On the achievements and prospects for the methods of computational fluid dynamics.
Advances in Mechanics,2011,41(5):562-589
|
CSCD被引
1
次
|
|
|
|
8.
Lynch P. A correlation for burn time of aluminum particles in the transition regime.
Proceedings of the Combustion Institute,2009,32(2):1887-1893
|
CSCD被引
6
次
|
|
|
|
9.
Zhang F. Reaction mechanism of aluminum-particle-air detonation.
Journal of Propulsion and Power,2009,25(4):845-858
|
CSCD被引
9
次
|
|
|
|
10.
Brooks K P. Dynamics of aluminum combustion.
Journal of Propulsion and Power,1995,11(4):769-780
|
CSCD被引
28
次
|
|
|
|
11.
Richard A Yetter. Metal particle combustion and nanotechnology.
Proceedings of the Combustion Institute,2009,32(2):1819-1838
|
CSCD被引
47
次
|
|
|
|
12.
McBride B J.
NASA Glenn coefficients for calculating thermodynamic properties of individual species. TP 2002 - 211556,2002
|
CSCD被引
1
次
|
|
|
|
13.
Jiang Z L. On dispersion-controlled principles for non-oscillatory shock-capturing schemes.
Acta Mechanica Sinica,2004,20(1):1-15
|
CSCD被引
13
次
|
|
|
|
14.
Zhang F. Aluminum particles-air detonation at elevated pressures.
Shock Waves,2006,15(5):313-324
|
CSCD被引
10
次
|
|
|
|
15.
Teng Honghui. Numerical investigation of one-dimensional overdriven detonation initiation.
Chinese J Comput Phys,2008,25(1):58-64
|
CSCD被引
3
次
|
|
|
|
|