持久性有机污染物在森林生态系统中的环境行为研究
Environmental behaviors of the persistent organic pollutants in forest ecosystem
查看参考文献86篇
文摘
|
持久性有机污染物(POPs)具有环境持久性和半挥发性,可以在区域及全球范围内传输和分布。森林植被和林下土壤富含有机质,森林生态系统因此成为POPs主要的储存库之一。植被叶片可快速吸附大气POPs,并通过叶片凋落、雨水冲刷和干沉降等过程加强或加速大气POPs向地面的沉降,并使森林土壤成为POPs的"汇",从而形成所谓的"森林过滤效应",进而影响POPs在全球的分布。进入森林的POPs在森林生态系统中将经历一系列的环境过程。本文简要介绍了森林过滤效应的特征和影响因素,综述了叶片对大气POPs的吸附、叶片凋落和干湿沉降、POPs在土壤中的迁移和损失等3个主要环境过程的研究进展,报道了松针、树皮和苔藓作为被动采样器反映的森林POPs空间分布趋势。最后,提出了森林POPs研究中亟待解决的科学问题,并指出未来中国森林POPs研究的可能方向。 |
其他语种文摘
|
Persistent organic pollutants (POPs) are a series of persistent, semi-volatile compounds that are found throughout the global environment. Forest plays an important role in the environmental fate of POPs. Because of its high organic content, forest is regarded as a sink for POPs. The primary effect of forest is pumping chemicals from the atmosphere to the forest soil, which is called the "forest filter effect". POPs are exposed to various processes in forest, including adsorption in leaves, leaf litter and dry and wet deposition, and leaching or loss in soil. Some vegetation tissues, for example, pine needles, mosses and tree barks, are observed to accumulate POPs, and have been employed for monitoring regional and global distribution of POPs. This paper reviewed the progress on the above-mentioned scientific topics and discussed the overlooked topics in current researches. In addition, we pointed out the work needed for further studies on POPs, especially in forest of China. |
来源
|
地理科学进展
,2013,32(2):278-287 【核心库】
|
关键词
|
持久性有机污染物(POPs)
;
森林过滤效应
;
凋落物
;
干湿沉降
;
空间分布
|
地址
|
中国科学院青藏高原研究所, 中国科学院青藏高原环境变化与地表过程重点实验室, 北京, 100101
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-6301 |
学科
|
环境科学基础理论 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:4763832
|
参考文献 共
86
共5页
|
1.
Barber J L. Air-side and plant-side resistances influence the uptake of airborne PCBs by evergreen plants.
Environmental Science & Technology,2002,36(15):3224-3229
|
CSCD被引
9
次
|
|
|
|
2.
Barber J L. Investigation into the importance of the stomatal pathway in the exchange of PCBs between air and plants.
Environmental Science & Technology,2002,36(20):4282-4287
|
CSCD被引
12
次
|
|
|
|
3.
Barber J L. Study of plant-air transfer of PCBs from an evergreen shrub: Implications for mechanisms and modeling.
Environmental Science & Technology,2003,37(17):3838-3844
|
CSCD被引
12
次
|
|
|
|
4.
Barber J L. Current issues and uncertainties in the measurement and modelling of air-vegetation exchange and within-plant processing of POPs.
Environmental Pollution,2004,128(1/2):99-138
|
CSCD被引
19
次
|
|
|
|
5.
Bellis D. Airborne uranium contamination: As revealed through elemental and isotopic analysis of tree bark.
Environmental Pollution,2001,114(3):383-387
|
CSCD被引
2
次
|
|
|
|
6.
Bergknut M. Vertical and lateral redistribution of POPs in soils developed along a hydrological gradient.
Environmental Science & Technology,2011,45(24):10378-10384
|
CSCD被引
3
次
|
|
|
|
7.
Borja J. Polychlorinated biphenyls and their biodegradation.
Process Biochemistry,2005,40(6):1999-2013
|
CSCD被引
53
次
|
|
|
|
8.
Brorstrom-Lunden E. Atmospheric fluxes of persistent semivolatile organic pollutants to a forest ecologicalsystem at the Swedish west coast and accumulation in spruce needles.
Environmental Pollution,1998,102(1):139-149
|
CSCD被引
3
次
|
|
|
|
9.
Choi S D. Depletion of gaseous polycyclic aromatic hydrocarbons by a forest canopy.
Atmospheric Chemistry and Physics,2008,8(14):4105-4113
|
CSCD被引
3
次
|
|
|
|
10.
Clarkson P J. The use of tree bark as a passive sampler for polychlorinated dibenzo-p-dioxins and furans.
International Journal of Environmental Analytical Chemistry,2002,82(11/12):843-850
|
CSCD被引
5
次
|
|
|
|
11.
Dalla Valle M. Maximum reservoir capacity of vegetation for persistent organic pollutants: Implications for global cycling.
Global Biogeochemical Cycles,2004,18(4)
|
CSCD被引
2
次
|
|
|
|
12.
Davidson D A. Orographic cold-trapping of persistent organic pollutants by vegetation in mountains of western Canada.
Environmental Science & Technology,2002,37(2):209-215
|
CSCD被引
10
次
|
|
|
|
13.
Davidson D A. Persistent organic pollutants in air and vegetation from the Canadian Rocky Mountains.
Environmental Toxicology and Chemistry,2004,23(3):540-549
|
CSCD被引
2
次
|
|
|
|
14.
Eriksson G. The pine needle as a monitor of atmospheric pollution.
Nature,1989,341:42-44
|
CSCD被引
16
次
|
|
|
|
15.
Evenset A. A comparison of organic contaminants in two high Arctic lakeecosystems, Bjornoya (Bear Island), Norway.
Science of the Total Environment,2004,318(1/3):125-141
|
CSCD被引
5
次
|
|
|
|
16.
高信曾.
植物学,1987
|
CSCD被引
2
次
|
|
|
|
17.
Ghirardello D. A dynamic model of the fate of organic chemicals in a multilayered air/soil system: Development and illustrative application.
Environmental Science & Technology,2010,44(23):9010-9017
|
CSCD被引
4
次
|
|
|
|
18.
Gouin T. Evidence for the"grasshopper" effect and fractionation during long-range atmospheric transport of organic contaminants.
Environmental Pollution,2004,128(1/2):139-148
|
CSCD被引
33
次
|
|
|
|
19.
Holoubek I. Soil burdens of persistent organic pollutants: Their levels, fate and risk. Part I. Variation of concentration ranges according to different soil uses and locations.
Environmental Pollution,2009,157(12):3207-3217
|
CSCD被引
4
次
|
|
|
|
20.
Horstmann M. Atmospheric deposition of semivolatile organic compounds to two forest canopies.
Atmospheric Environment,1998,32(10):1799-1809
|
CSCD被引
8
次
|
|
|
|
|