镁基多孔材料准静态压缩行为与吸能特性研究
The Quasi-static Compressive Behavior and Energy Absorption Properties of Mg-based Porous Materials
查看参考文献12篇
文摘
|
基于可去除填充颗粒的粉末冶金技术制备了孔隙率在40%~80%,孔径在1~2mm内变化的多孔镁和多孔AZ91D镁合金,并系统考察了材料的准静压压缩行为和吸能特性。结果发现,镁基多孔材料的压缩应力-应变曲线由线性弹性区、平台和致密化区域组成,但曲线锯齿状波动较大,表明材料的脆性断裂机制。压缩屈服强度与相对密度的关系可通过Gibson-Ashby模型来理解,但屈服强度对孔径的依赖性较低。吸能本领随相对密度的增加而增加,相同条件下,多孔AZ91D镁合金的吸能本领高于多孔镁,多孔镁的吸能效率则高于多孔AZ91D镁合金。 |
其他语种文摘
|
Porous Mg and porous AZ91D alloy were prepared using powder metallurgy method basing on space holding fillers. The porosity and pore size can be controlled in the range of 40%-80% and 0.5-2.0mm respectively. The investigation was carried out on the quasi-static compressive behavior and energy absorption properties of the Mg-based porous materials. The result shows that the compressive stress-strain curves were consisted of linear elastic region, plateau and densification region. The plateau region is serrated which indicates a brittle deformation mechanism. The dependence of yield strength on relative density can be understood in terms of Gibson-Ashby model, but the effect of pore size is small that can be neglectable. The energy absorption capacity of the Mg-based porous materials increases with the relative density increasing. Porous AZ91D alloy at the same conditions exhibits a higher energy absorption capacity than the porous Mg, that however represents a higher energy absorption efficiency than the porous AZ91D alloy. |
来源
|
材料工程
,2013(2):29-34 【核心库】
|
DOI
|
10.3969/j.issn.1001-4381.2013.02.006
|
关键词
|
镁基多孔材料
;
压缩行为
;
吸能特性
|
地址
|
1.
延安大学物理与电子信息学院材料物理研究所, 中国科学院材料物理重点实验室, 陕西, 延安, 716000
2.
中国科学院固体物理研究所, 中国科学院材料物理重点实验室, 合肥, 230031
3.
延安大学物理与电子信息学院材料物理研究所, 陕西, 延安, 716000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
一般工业技术;金属学与金属工艺 |
基金
|
陕西省自然科学基金
;
陕西省教育厅自然科学基金
;
延安市工业攻关专项
;
陕西省高水平大学建设专项
;
延安大学项目
|
文献收藏号
|
CSCD:4759257
|
参考文献 共
12
共1页
|
1.
Banhart J. Manufacture, characterization and application of cellular metals and metal foams.
Prog Mater Sci,2001,46(6):559-632
|
CSCD被引
345
次
|
|
|
|
2.
Nakajima H. Porous metals and metal foaming technology.
Proceedings of 4~(th) international conference on porous metals and metal foaming technology,2006:1-10
|
CSCD被引
1
次
|
|
|
|
3.
何德平.
超轻多孔金属,2006:1-7
|
CSCD被引
1
次
|
|
|
|
4.
Yamada Y. Compressive properties of open-cellular SG91A Al and AZ91 Mg.
Materials Science and Engineering A,1999,272(2):455-458
|
CSCD被引
9
次
|
|
|
|
5.
Mukai T. Dynamic compressive behavior of an ultra-lightweight magnesium foam.
Scr Mater,1999,41(4):365-371
|
CSCD被引
13
次
|
|
|
|
6.
Wen C E. Processing of biocompatible porous Ti and Mg.
Scr Mater,2001,45(10/19):1147-1153
|
CSCD被引
69
次
|
|
|
|
7.
Wen C E. Compressibility of porous magnesium foam: dependency on porosity and pore size.
Materials Letters,2004,58(3/4):357-360
|
CSCD被引
36
次
|
|
|
|
8.
Hao Gangling. Processing and mechanical properties of magnesium foam.
Journal of Porous Materials,2009,16(2):251-256
|
CSCD被引
18
次
|
|
|
|
9.
Gent A N. Permeability of open-cell foamed materials.
J Cell Plast,1966,2(1):46-51
|
CSCD被引
2
次
|
|
|
|
10.
Thornton P H. The deformation of aluminium foams.
Metall Trans A,1975,6(6):1253-1263
|
CSCD被引
7
次
|
|
|
|
11.
Miltz J. Evaluation of cushioning properties of plastic foams from compressive measurements.
Polymer Eng Sci,1981,21(15):1010-1014
|
CSCD被引
76
次
|
|
|
|
12.
Gibson L J.
Cellular Solids: Structure and Properties, 2nd ed,1997:175-235
|
CSCD被引
2
次
|
|
|
|
|