帮助 关于我们

返回检索结果

基于手机基站数据的城市交通流量模拟
Traffic Flow Simulation Based on Call Detail Records

查看参考文献32篇

吴健生 1   黄力 1 *   刘瑜 2   彭建 3   李卫锋 4   高松 2   康朝贵 2  
文摘 基于移动定位数据的城市内社会经济活动特征分析是人类移动性的重要研究内容,而交通流量更是这些特征的基本反映。为还原城市道路网络的使用情况并分析其分布特征,本文从产生交通流量的个体出发,对包含基站位置的手机话单数据进行系统抽样,利用蒙特卡洛方法产生个体的出行起止点,并结合当地道路交通网络求得最短路径,最后估算出一天内道路交通网络上的流量分布。通过分析发现:城市内大部分道路的流量小,使用率低,大部分交通流量集中在小部分主干道路;进一步统计分析可知,当地道路交通流量符合20/80规律,即大约20%的道路承担着80%的交通流量;而对不同类型的道路,流量分布也反映出其在城市道路网络中的地位和作用。此研究对于历史交通流量分布的重现、城市道路交通模式的研究以及基于此的道路网络规划情景模拟都有着重要意义。
其他语种文摘 Urban social and economic activity analysis based on mobile location data is a magnificent context for human mobility research and the traffic flow is one of the most basic activities. In order to restore the use of urban transportation network and examine its distribution, we apply a novel approach to draw a traffic flow distribution map of local road network based on a large number of individual cellphone detailed records. We reconstruct details of individual user's mobility and generate its traffic flow step by step: 1. Sampling cellphone records from local operator; 2. simulating the random start point and end point for each individual by Monte Carlo; 3. working out its route through the shortest path. After sampling and simulating thousands of records in one day, we finally draw a traffic flow distribution map of local road network, in which we uncover that a large portion of roads contains a small portion of flows and vice versa. In further statistical analysis, we reach the 20/80 principle of traffic flow: 20% of the top roads accommodate 80% of traffic flow. And flow distribution of different road types reflects the function of urban transportation networks. This research make a contribution to the reconstructed historical traffic flow distribution, studies on urban road network pattern and scenario simulation of transportation planning.
来源 地理学报 ,2012,67(12):1657-1665 【核心库】
关键词 人类移动性 ; 手机基站数据 ; 城市交通流量模拟
地址

1. 北京大学深圳研究生院, 城市人居环境科学与技术国家级重点实验室, 深圳, 518055  

2. 北京大学遥感与地理信息系统研究所, 北京, 100871  

3. 北京大学城市与环境学院, 北京, 100871  

4. 香港大学城市规划与设计系, 香港

语种 中文
ISSN 0375-5444
学科 公路运输
基金 国家自然科学基金项目
文献收藏号 CSCD:4735084

参考文献 共 32 共2页

1.  路紫. 旅游网站访问者行为的时间分布及导引分析. 地理学报,2007,62(6):621-630 CSCD被引 27    
2.  毛夏. 深圳市人口分布的细网格动态特征. 地理学报,2010,65(4):443-453 CSCD被引 25    
3.  刘瑜. 基于位置感知设备的人类移动研究综述. 地理与地理信息科学,2011,27(4):8-13 CSCD被引 45    
4.  柴彦威. 基于移动定位的行为数据采集与地理应用研究. 地域研究与开发,2010,29(6):1-7 CSCD被引 15    
5.  Kwan M. The interaction between ICT and human activity-travel behavior. Transportation Research Part A: Policy and Practice,2007,41(2):121-124 CSCD被引 6    
6.  Brockmann D. The scaling laws of human travel. Nature,2006,439(7075):462-465 CSCD被引 78    
7.  Brockmann D. Money circulation, trackable items, and the emergence of universal human mobility patterns. Pervasive Computing, IEEE,2008,7(4):28-35 CSCD被引 2    
8.  Kang C. Analyzing and geo-visualizing individual human mobility patterns using mobile call records. 18th International Conference on Geoinformatics,2010 CSCD被引 1    
9.  Ahas R. Evaluating passive mobile positioning data for tourism surveys: An Estonian case study. Tourism Management,2008,29(3):469-486 CSCD被引 17    
10.  Ahas R. Seasonal tourism spaces in Estonia: Case study with mobile positioning data. Tourism Management,2007,28(3):898-910 CSCD被引 16    
11.  Nobis C. Communication and mobility behaviour: A trend and panel analysis of the correlation between mobile phone use and mobility. Journal of Transport Geography,2009,17(2):93-103 CSCD被引 8    
12.  Schwanen T. The Internet, mobile phone and space-time constraints. Geoforum,2008,39(3):1362-1377 CSCD被引 23    
13.  Phithakkitnukoon S. Activity-aware map: Identifying human daily activity pattern using mobile phone data. Human Behavior Understanding, Lecture Notes in Computer Science,2010,6219:14-25 CSCD被引 4    
14.  Ahas R. Daily rhythms of suburban commuters' movements in the Tallinn metropolitan area: Case study with mobile positioning data. Transportation Research Part C: Emerging Technologies,2010,18(1):45-54 CSCD被引 15    
15.  Gonzalez M C. Understanding individual human mobility patterns. Nature,2008,453(7196):779-782 CSCD被引 211    
16.  Piorkowski M. Sampling urban mobility through on-line repositories of GPS.tracks. Proceedings of the 1st ACM International Workshop on Hot Topics of Planet-Scale Mobility Measurements,2009 CSCD被引 1    
17.  Candia J. Uncovering individual and collective human dynamics from mobile phone records. Journal of Physics A: Mathematical and Theoretical,2008,41(22):224015 CSCD被引 15    
18.  Sevtsuk A. Does urban mobility have a daily routine? Learning from the aggregate data of mobile networks. Journal of Urban Technology,2010,17(1):41-60 CSCD被引 14    
19.  Yuan Y. Correlating mobile phone usage and travel behavior: A case study of Harbin, China. Computers, Environment and Urban Systems,2012,36(2):118-130 CSCD被引 17    
20.  Song C. Limits of predictability in human mobility. Science,2010,327(5968):1018-1021 CSCD被引 104    
引证文献 14

1 方志祥 利用终端位置时空转移概率预测通讯基站服务用户规模 地球信息科学学报,2017,19(6):772-781
CSCD被引 3

2 许宁 从大规模短期规则采样的手机定位数据中识别居民职住地 武汉大学学报. 信息科学版,2014,39(6):750-756
CSCD被引 27

显示所有14篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号