考虑煤油裂解效应的超声速燃烧室再生冷却过程分析
A Coupled Heat Transfer Analysis with Effects of Catalytic Cracking of Kerosene for Actively Cooled Supersonic Combustor
查看参考文献21篇
文摘
|
为了分析宽马赫数飞行条件下超声速燃烧室再生冷却性能以及考虑燃料高温裂解效应对冷却的影响,发展了具有一定通用性的超声速燃烧室再生冷却系统气-固-液传热分析模型,对燃烧室内流、冷却剂流动以及冷却结构进行了气-固-液传热耦合计算。燃烧室内流计算模型无需实验测量的静压数据以及总温/释热分布假设,通过直接求解质量、动量、能量守恒微分方程并结合燃料混合及燃烧模型来获得内流参数分布。同时对燃烧室壁面传热进行了计算,将冷却结构内冷却剂的流动、换热与燃烧室内流耦合,并且着重考虑了煤油作为冷却剂,其物态随温度、压力变化以及高温时出现的热/催化裂解吸热化学反应。基于实验数据发展了煤油热/催化裂解总包反应模型,对煤油热裂解和催化裂解两种过程的化学吸热性能进行了对比,研究了热/催化裂解效应对再生冷却的影响。 |
其他语种文摘
|
In order to establish assessment and optimization method of combustor regenerative cooling system, one-dimensional heat transfer analysis coupling the supersonic combustor flow, the coolant flow and the cooling wall was developed. Without pressure data obtained from experiments and assumption for the distribution of total temperature and heat release, the flow properties of the combustor were obtained by directly solving the mass, momentum and energy differential equations with fuel mixing and reaction modeling. The flow and heat transfer properties of the coolant at varied states were solved and coupled with the combustor flow by calculating the heat conduction through the cooling wall. The thermal and catalytic cracking of the aviation kerosene were considered in the present model and their effects on the cooling were studied. It is found that at flow conditions of Mach 6 flight, the cracking effect on the cooling is obvious in the downstream half part of the combustor and the hot-wall temperature is further reduced due to the endothermicity of the kerosene cracking. Compared with thermal cracking, catalytic cracking increases the cooling effectiveness even further. |
来源
|
推进技术
,2013,34(1):47-53 【核心库】
|
关键词
|
超声速燃烧室
;
耦合传热
;
再生冷却
;
超临界态
;
催化裂解
|
地址
|
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4055 |
学科
|
航空 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:4734228
|
参考文献 共
21
共2页
|
1.
Sobel D R. Hydrocarbon Fuel Cooling Technologies for Advanced Propulsion.
ASME Journal of Engineering for Gas Turbines and Power,1997,119(2)
|
CSCD被引
44
次
|
|
|
|
2.
Fabuss B M. Rapid Thermal Cracking of n-Hexadecane at Elevated Pressures.
Industrial and Engineering Chemistry Process Design and Development,1962,1(4):293-299
|
CSCD被引
3
次
|
|
|
|
3.
Edwards T.
Results of High Temperature JP-7 Cracking Assessment. AIAA 93-0806
|
CSCD被引
2
次
|
|
|
|
4.
Edwards T. Cracking and Deposition Behavior of Supercritical Hydrocarbon Aviation Fuels.
Combustion Sciences and Technologies,2006,178(1/3):307-334
|
CSCD被引
55
次
|
|
|
|
5.
仲峰泉. 带主动冷却的超声速燃烧室传热分析.
推进技术,2009,30(5)
|
CSCD被引
2
次
|
|
|
|
6.
Gamble E J.
Development of a Scramjet/Ramjet Heat Exchanger Analysis Tool (SRHE-AT?). AIAA 20084614
|
CSCD被引
1
次
|
|
|
|
7.
Zhong F Q. Thermal Cracking of Aviation Kerosene for Scramjet Applications.
Science in China E,2009,52(9)
|
CSCD被引
1
次
|
|
|
|
8.
Fan X J. Catalytic Cracking and Heat Sink Capacity of Aviation Kerosene under Supercritical Conditions.
Journal of Propulsion and Power,2009,25(6):1226-1232
|
CSCD被引
8
次
|
|
|
|
9.
Birzer C. Quasi One-Dimensional Model of Hydrogen-Fueled Scramjet Combustors.
Journal of Propulsion and Power,2009,25(6):1220-1225
|
CSCD被引
13
次
|
|
|
|
10.
White F M.
Viscous Fluid Flow,1974
|
CSCD被引
40
次
|
|
|
|
11.
Eckert E R G.
Engineering Relations for Heat Transfer and Friction in High-Velocity Laminar and Turbulent Boundary Layer Flow Over Surfaces With Constant Pressure and Temperature,1956
|
CSCD被引
2
次
|
|
|
|
12.
Spalding D B. Mixing and Chemical Reaction in Steady Confined Turbulent Flames.
13th Symp. on Combustion,1970
|
CSCD被引
2
次
|
|
|
|
13.
Anderson G Y. An Examination of Injector/Combustor Design Effects on Scramjet Performance.
Proceedings of the 2nd International Symposium on Air Breathing Engines,1974
|
CSCD被引
1
次
|
|
|
|
14.
Pulsonetti M V.
An Engineering Model for Analysis of Scramjet Combustor Performance with Finite Rate Chemistry. AIAA 1988-3258
|
CSCD被引
1
次
|
|
|
|
15.
Rogers R C.
Mixing of Hydrogen Injected from Multiple Injectors Normal to a Supersonic Airstream. NASA TN D-6476,1971
|
CSCD被引
2
次
|
|
|
|
16.
Waltrup P J. Prediction of Precombustion Wall Pressure Distributions in Scramjet Engines.
Journal of Spacecraft and Rockets,1973,10(9)
|
CSCD被引
12
次
|
|
|
|
17.
Heiser W H.
Hypersonic Airbreathing Propulsion,1994
|
CSCD被引
91
次
|
|
|
|
18.
Zhong F Q. Heat Transfer of Aviation Kerosene at Supercritical Conditions.
Journal of Thermophysics & Heat Transfer,2009,23(3):543-550
|
CSCD被引
53
次
|
|
|
|
19.
王永鹏. 三维冷却结构中航空煤油对流传热特性实验研究.
第三届高超声速科技学术会议,2010
|
CSCD被引
2
次
|
|
|
|
20.
范学军. 大庆RP-3航空煤油热物性分析.
推进技术,2006,27(2)
|
CSCD被引
7
次
|
|
|
|
|