帮助 关于我们

返回检索结果

考虑煤油裂解效应的超声速燃烧室再生冷却过程分析
A Coupled Heat Transfer Analysis with Effects of Catalytic Cracking of Kerosene for Actively Cooled Supersonic Combustor

查看参考文献21篇

文摘 为了分析宽马赫数飞行条件下超声速燃烧室再生冷却性能以及考虑燃料高温裂解效应对冷却的影响,发展了具有一定通用性的超声速燃烧室再生冷却系统气-固-液传热分析模型,对燃烧室内流、冷却剂流动以及冷却结构进行了气-固-液传热耦合计算。燃烧室内流计算模型无需实验测量的静压数据以及总温/释热分布假设,通过直接求解质量、动量、能量守恒微分方程并结合燃料混合及燃烧模型来获得内流参数分布。同时对燃烧室壁面传热进行了计算,将冷却结构内冷却剂的流动、换热与燃烧室内流耦合,并且着重考虑了煤油作为冷却剂,其物态随温度、压力变化以及高温时出现的热/催化裂解吸热化学反应。基于实验数据发展了煤油热/催化裂解总包反应模型,对煤油热裂解和催化裂解两种过程的化学吸热性能进行了对比,研究了热/催化裂解效应对再生冷却的影响。
其他语种文摘 In order to establish assessment and optimization method of combustor regenerative cooling system, one-dimensional heat transfer analysis coupling the supersonic combustor flow, the coolant flow and the cooling wall was developed. Without pressure data obtained from experiments and assumption for the distribution of total temperature and heat release, the flow properties of the combustor were obtained by directly solving the mass, momentum and energy differential equations with fuel mixing and reaction modeling. The flow and heat transfer properties of the coolant at varied states were solved and coupled with the combustor flow by calculating the heat conduction through the cooling wall. The thermal and catalytic cracking of the aviation kerosene were considered in the present model and their effects on the cooling were studied. It is found that at flow conditions of Mach 6 flight, the cracking effect on the cooling is obvious in the downstream half part of the combustor and the hot-wall temperature is further reduced due to the endothermicity of the kerosene cracking. Compared with thermal cracking, catalytic cracking increases the cooling effectiveness even further.
来源 推进技术 ,2013,34(1):47-53 【核心库】
关键词 超声速燃烧室 ; 耦合传热 ; 再生冷却 ; 超临界态 ; 催化裂解
地址

中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190

语种 中文
文献类型 研究性论文
ISSN 1001-4055
学科 航空
基金 国家自然科学基金
文献收藏号 CSCD:4734228

参考文献 共 21 共2页

1.  Sobel D R. Hydrocarbon Fuel Cooling Technologies for Advanced Propulsion. ASME Journal of Engineering for Gas Turbines and Power,1997,119(2) CSCD被引 44    
2.  Fabuss B M. Rapid Thermal Cracking of n-Hexadecane at Elevated Pressures. Industrial and Engineering Chemistry Process Design and Development,1962,1(4):293-299 CSCD被引 3    
3.  Edwards T. Results of High Temperature JP-7 Cracking Assessment. AIAA 93-0806 CSCD被引 2    
4.  Edwards T. Cracking and Deposition Behavior of Supercritical Hydrocarbon Aviation Fuels. Combustion Sciences and Technologies,2006,178(1/3):307-334 CSCD被引 55    
5.  仲峰泉. 带主动冷却的超声速燃烧室传热分析. 推进技术,2009,30(5) CSCD被引 2    
6.  Gamble E J. Development of a Scramjet/Ramjet Heat Exchanger Analysis Tool (SRHE-AT?). AIAA 20084614 CSCD被引 1    
7.  Zhong F Q. Thermal Cracking of Aviation Kerosene for Scramjet Applications. Science in China E,2009,52(9) CSCD被引 1    
8.  Fan X J. Catalytic Cracking and Heat Sink Capacity of Aviation Kerosene under Supercritical Conditions. Journal of Propulsion and Power,2009,25(6):1226-1232 CSCD被引 8    
9.  Birzer C. Quasi One-Dimensional Model of Hydrogen-Fueled Scramjet Combustors. Journal of Propulsion and Power,2009,25(6):1220-1225 CSCD被引 13    
10.  White F M. Viscous Fluid Flow,1974 CSCD被引 40    
11.  Eckert E R G. Engineering Relations for Heat Transfer and Friction in High-Velocity Laminar and Turbulent Boundary Layer Flow Over Surfaces With Constant Pressure and Temperature,1956 CSCD被引 2    
12.  Spalding D B. Mixing and Chemical Reaction in Steady Confined Turbulent Flames. 13th Symp. on Combustion,1970 CSCD被引 2    
13.  Anderson G Y. An Examination of Injector/Combustor Design Effects on Scramjet Performance. Proceedings of the 2nd International Symposium on Air Breathing Engines,1974 CSCD被引 1    
14.  Pulsonetti M V. An Engineering Model for Analysis of Scramjet Combustor Performance with Finite Rate Chemistry. AIAA 1988-3258 CSCD被引 1    
15.  Rogers R C. Mixing of Hydrogen Injected from Multiple Injectors Normal to a Supersonic Airstream. NASA TN D-6476,1971 CSCD被引 2    
16.  Waltrup P J. Prediction of Precombustion Wall Pressure Distributions in Scramjet Engines. Journal of Spacecraft and Rockets,1973,10(9) CSCD被引 12    
17.  Heiser W H. Hypersonic Airbreathing Propulsion,1994 CSCD被引 91    
18.  Zhong F Q. Heat Transfer of Aviation Kerosene at Supercritical Conditions. Journal of Thermophysics & Heat Transfer,2009,23(3):543-550 CSCD被引 53    
19.  王永鹏. 三维冷却结构中航空煤油对流传热特性实验研究. 第三届高超声速科技学术会议,2010 CSCD被引 2    
20.  范学军. 大庆RP-3航空煤油热物性分析. 推进技术,2006,27(2) CSCD被引 7    
引证文献 3

1 沈双晏 活性自由基对煤油裂解气点火延迟时间的影响分析 推进技术,2016,37(8):1507-1514
CSCD被引 3

2 朱呈祥 高超声速进气道的裂解碳氢燃料提前喷注研究 推进技术,2018,39(1):196-202
CSCD被引 2

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号