帮助 关于我们

返回检索结果

Ladle Furnace Liquid Steel Temperature Prediction Model Based on Optimally Pruned Bagging

查看参考文献22篇

Lu Wu 1   Mao Zhizhong 2   Yuan Ping 1  
文摘 For accurately forecasting the liquid steel temperature in ladle furnace (LF), a novel temperature prediction model based on optimally pruned Bagging combined with modified extreme learning machine (ELM) is proposed. By analyzing the mechanism of LF thermal system, a thermal model with partial linear structure is obtained. Subsequently, modified ELM, named as partial linear extreme learning machine (PLELM), is developed to estimate the unknown coefficients and undefined function of the thermal model. Finally, a pruning Bagging method is proposed to establish the aggregated prediction model for the sake of overcoming the limitation of individual predictor and further improving the prediction performance. In the pruning procedure, AdaBoost is adopted to modify the aggregation order of the original Bagging ensembles, and a novel early stopping rule is designed to terminate the aggregation earlier. As a result, an optimal pruned Bagging ensemble is achieved, which is able to retain Bagging's robustness against highly influential points, reduce the storage needs as well as speed up the computing time. The proposed prediction model is examined by practical data, and comparisons with other methods demonstrate that the new ensemble predictor can improve prediction accuracy, and is usually consisted compactly.
来源 Journal of Iron and Steel Research , International,2012,19(12):21-28 【核心库】
DOI 10.1016/s1006-706x(13)60027-8
关键词 Bagging ; extreme learning machine ; LF liquid steel temperature prediction model ; AdaBoost
地址

1. College of Information Science and Engineering, Northeastern University, Liaoning, Shenyang, 110004  

2. College of Information Science and Engineering, Northeastern University, State Key Laboratory of Synthetical Automation, Liaoning, Shenyang, 110004

语种 英文
ISSN 1006-706X
学科 冶金工业
基金 Item Sponsored by Fundamental Research Funds for Central Universities of China ;  国家自然科学基金
文献收藏号 CSCD:4725263

参考文献 共 22 共2页

1.  Camdali U. Energy and Exergy Analysis of a Ladle Furnace. Canadian Metallurgical Quarterly,2003,42(4):439 CSCD被引 7    
2.  Camdali U. Steady State Heat Transfer of Ladle Furnace During Steel Production Process. Journal of Iron and Steel Research, International,2006,13(3):18 CSCD被引 17    
3.  Nath N K. Ladle Furnace OnLine Reckoner for Prediction and Control of Steel Temperature and Composition. Ironmaking and Steelmaking,2006,33:140 CSCD被引 16    
4.  Wang Xuelei. The Research of LF Liquid Steel Temperature Prediction Based on PLS-SVM Algorithm. (in Chinese),2007 CSCD被引 1    
5.  Tian H X. An Ensemble ELM Based on Modified AdaBoost. RT Algorithm for Predicting the Temperature of Molten Steel in Ladle Furnace. IEEE Transactions on Automation Science and Engineering,2010,7(1):73 CSCD被引 21    
6.  Tian H X. Application of Genetic Algorithm Combined With BP Neural Network in Soft Sensor of Molten Steel Temperature. The 6th World Congress on Intelligent Control and Automation,2006:742 CSCD被引 1    
7.  Huang G B. Universal Approximation Using Incremental Constructive Feedforward Networks With Random Hidden Nodes. IEEE Transactions on Neural Networks,2006,17(4):879 CSCD被引 170    
8.  Huang G B. Extreme Learning Machine: Theory and Applications. Neurocomputing,2006,70:489 CSCD被引 1288    
9.  Tang Dong. Thermal Efficiency and Electrode Consumption of Ladle Furnace. (in Chinese),2002 CSCD被引 1    
10.  Speckman P. Kernel Smoothing in Partial Linear Models. Journal of the Royal Statistical Society Series. B,1988,50(3):413 CSCD被引 101    
11.  Hardle W. Partially Linear Models,2000 CSCD被引 51    
12.  Buhlman P L. Analyzing Bagging. Annals of Statistics,2002,30(4):927 CSCD被引 1    
13.  Zhou Z H. Ensembling Neural Networks: Many Could be Better Than All. Artificial Intelligence,2002,137(1):239 CSCD被引 310    
14.  Bauer E. An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. Machine Learning,1999,36(1/2):105 CSCD被引 72    
15.  Opitz D. Popular Ensemble Methods: An Empirical Study. Journal of Artificial Intelligence Research,1999,11:169 CSCD被引 35    
16.  Drucker H. Improving Regressor Using Boosting. Proceedings of the 14th International Conference on Machine Learning,1997:107 CSCD被引 6    
17.  Brown G. Managing Diversity in Regression Ensembles. Journal of Machine Learning Research,2005,6:1621 CSCD被引 10    
18.  Webb G I. MultiBoosting: A Technique for Combining Boosting and Wagging. Machine Learning,2000,40(2):159 CSCD被引 19    
19.  Martinez Munoz G. Using Boosting to Prune Bagging Ensembles. Pattern Recognition Letters,2007,28(1):156 CSCD被引 12    
20.  Zhang C X. Using Boosting to Prune Double-Bagging Emsembles. Computational Statistics and Data Analysis,2009,53(4):1218 CSCD被引 6    
引证文献 5

1 Feng Kai Endpoint temperature prediction of molten steel in RH using improved case-based reasoning International Journal of Minerals, Metallurgy and Materials,2013,20(12):1148-1154
CSCD被引 5

2 侯帅 大型气垫式退火炉试验平台的研究与开发 东北大学学报. 自然科学版,2015,36(12):1706-1709
CSCD被引 0 次

显示所有5篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号