氮同位素控制下黄河及其主要支流硝酸盐来源分析
Tracing Nitrate Sources of the Yellow River and Its Tributaries With Nitrogen Isotope
查看参考文献36篇
文摘
|
选取黄河小浪底水库及以下干流和支流河水为主要研究对象,利用氮同位素识别河水潜在硝酸盐来源,结果表明,研究区黄河干流及支流沁河和伊洛河河水硝酸盐含量均值分别为(4.77±0.95)、(3.45±1.71)和(4.50±0.91)mg·L~(-1)。研究区黄河干流河水δ~(15)N-NO_3~-)均值为(+3.2±4.5)‰,上游河水硝酸盐来源主要为土壤有机氮矿化,下游平原区河水硝酸盐来源包括土壤有机氮矿化以及化学肥料。沁河河水δ~(15)N-NO_3~-)均值为(+8.3±4.6)‰,丰水期河水硝酸盐来源包括大气降水、土壤有机氮矿化以及化学肥料;平水期河水硝酸盐受到生活污水和土壤有机氮矿化共同影响;枯水期沁河河水由于断流形成封闭水体,浮游植物和藻类生长以及反硝化作用是控制河水硝酸盐的重要因素。枯水期洛河和伊河河水δ~(15)N-NO_3~-)值分别为+10.9‰和+3.4‰,其中生活污水是洛河河水硝酸盐的重要来源,合成化学肥料是伊河河水硝酸盐的重要来源。 |
其他语种文摘
|
Human activities have greatly affected the nitrogen (N) cycles in the terrestrial and aquatic ecosystems. The Xiaolangdi Reservoir on the Yellow River and the mainstream and tributaries of the River thereafter, including Qin River and Yiluo River, were selected as subjects in this study to trace potential nitrate sources of the waters with nitrogen isotope. It was found that the average nitrate content in the mainstream of the Yellow Rvier and its tributaries, Qin River and Yiluo River, was (4.77±0.95) mg·L~(-1), (3.45±1.71) mg·L~(-1) and (4.50±0.91) mg·L~(-1), respectively; and the average δ~(15)N-NO_3~- in the mainstream was (+3.2±4.5)‰. Dissolved nitrate in upper stream of the Yellow River in the studied area came mainly from mineralized soil organic nitrogen, and in the rivers of the lower reaches from mineralized soil organic nitrogen and fertilizers applied. The average δ~(15)N-NO_3~- was (+8.3±4.6)‰ in the Qin River. Its nitrate came mainly from atmospheric precipitation, mineralized soil organic nitrogen and fertilizers during the high water season, and from sewage water and mineralized soil organic nitrogen during the normal water season, and from growth of phytoplankton and cyanobacteria, and denitrification in enclosed waters formed after the river discontiunued its flow during the low water season. Druing the low water season, the average δ~(15)N-NO_3~- was +10.9‰ and +3.4‰ in the Luo River and the Yi River respectively. In the former, sewage was the main source of nitrate, while in the latter the fertilizers. |
来源
|
生态与农村环境学报
,2012,28(6):622-627 【核心库】
|
关键词
|
河流
;
硝酸盐
;
氮同位素
;
来源识别
;
黄河
|
地址
|
1.
河南理工大学资源环境学院, 环境地球化学国家重点实验室, 河南, 焦作, 454000
2.
河南理工大学资源环境学院, 河南, 焦作, 454000
3.
济源市环境保护局沁园服务中心, 河南, 济源, 454600
|
语种
|
中文 |
ISSN
|
1673-4831 |
学科
|
地球物理学;环境污染及其防治 |
基金
|
国家自然科学基金
;
中国煤炭工业协会2010年度科学技术研究指导性计划项目
|
文献收藏号
|
CSCD:4712980
|
参考文献 共
36
共2页
|
1.
Mayer B. Isotopic Characterization of Nitrate Sources and Transformations in Lake Winnipeg and Its Contributing Rivers,Manitoba,Canada.
Journal of Great Lakes Research,2012,38(Suppl.2):135-146
|
CSCD被引
6
次
|
|
|
|
2.
Vitousek P M. Human Alteration of the Global Nitrogen Cycle:Sources and Consequences.
Ecological Applications,1997,7(3):737-750
|
CSCD被引
438
次
|
|
|
|
3.
李东坡. 化学肥料的土壤生态环境效应.
应用生态学报,2008,19(5):1158-1165
|
CSCD被引
87
次
|
|
|
|
4.
刘相超. 三峡库区梁滩河流域水化学与硝酸盐污染.
地理研究,2010,29(4):629-639
|
CSCD被引
12
次
|
|
|
|
5.
夏星辉. 黄河流域河水氮污染分析.
环境科学学报,2001,21(5):563-568
|
CSCD被引
26
次
|
|
|
|
6.
汪涛. 川中丘陵区典型小流域地下水硝酸盐污染分析.
生态与农村环境学报,2006,22(3):84-87
|
CSCD被引
19
次
|
|
|
|
7.
河南省统计局.
河南统计年鉴2011,2011
|
CSCD被引
7
次
|
|
|
|
8.
王翠红. NPK肥不同配比对萝卜产量及硝酸盐含量的影响.
生态与农村环境学报,2006,22(4):62-66
|
CSCD被引
8
次
|
|
|
|
9.
Widory D. Tracking the Sources of Nitrate in Groundwater Using Coupled Nitrogen and Boron Isotopes:A Synthesis.
Environmental Science & Technology,2005,39(2):539-548
|
CSCD被引
33
次
|
|
|
|
10.
Widory D. Improving the Management of Nitrate Pollution in Water by the Use of Isotope Monitoring:The δ~(15)N,δ~(18)O and δ~(11)B Triptych.
Isotopes in Environmental and Health Studies,2012
|
CSCD被引
5
次
|
|
|
|
11.
Ohte N. Tracing Sources and Pathways of Dissolved Nitrate in Forest and River Ecosystems Using High-Resolution Isotopic Techniques:A Review.
Ecological Research,2012
|
CSCD被引
5
次
|
|
|
|
12.
Rock L. Tracing Nitrates and Sulphates in River Basins Using Isotope Techniques.
Water Science & Technology,2006,53(10):209-217
|
CSCD被引
1
次
|
|
|
|
13.
Stogbauer A. Rivers of North-Rhine Westphalia Revisited:Tracing Changes in River Chemistry.
Applied Geochemistry,2008,23(12):3290-3304
|
CSCD被引
7
次
|
|
|
|
14.
Choi B Y. Sources and Biogeochemical Behavior of Nitrate and Sulfate in an Alluvial Aquifer:Hydrochemical and Stable Isotope Approaches.
Applied Geochemistry,2011,26(7):1249-1260
|
CSCD被引
3
次
|
|
|
|
15.
Seiler R L. Combined Use of ~(15)N and ~(18)O of Nitrate and ~(11)B to Evaluate Nitrate Contamination in Groundwater.
Applied Geochemistry,2005,20(9):1626-1636
|
CSCD被引
21
次
|
|
|
|
16.
Mattern S. Identification of the Nitrate Contamination Sources of the Brusselian Sands Groundwater Body (Belgium) Using a Dual-Isotope Approach.
Isotopes in Environmental and Health Studies,2011,47(3):297-315
|
CSCD被引
2
次
|
|
|
|
17.
Anisfeld S C. Isotopic Apportionment of Atmospheric and Sewage Nitrogen Sources in Two Connecticut Rivers.
Environmental Science & Technology,2007,41(18):6363-6369
|
CSCD被引
6
次
|
|
|
|
18.
邢萌. 西安浐河、灞河硝酸盐氮同位素特征及污染源示踪探讨.
地球学报,2008,29(6):783-789
|
CSCD被引
21
次
|
|
|
|
19.
邢萌. 浐河,涝河河水硝酸盐氮污染来源的氮同位素示踪.
环境科学,2010,31(10):2305-2310
|
CSCD被引
36
次
|
|
|
|
20.
金赞芳. 城市地下水硝酸盐污染及其原因分析.
土壤学报,2004,41(2):251-258
|
CSCD被引
2
次
|
|
|
|
|