双轴拉伸应力下后继屈服面的演化研究
Investigation of Subsequent Yield Surface Evolution Under Biaxial Tension
查看参考文献27篇
文摘
|
屈服面的位置和形状直接影响着材料塑性应变的确定。针对双轴拉伸应力下金属材料的塑性行为,以一种弹塑性损伤本构理论为基础,研究了后继屈服面在拉-拉应力空间中的演化。考虑了有限变形效应和耦合硬化效应,给出了屈服面的确定方法,并预测了拉-拉应力空间中的初始屈服面(IYS)和后继屈服面,预测结果显示本文提出的理论模型能一致描述出后继屈服面演化中的前端尖点效应、尾部包氏效应、膨胀/收缩以及移动和畸变。针对两种加工硬化材料(Al 6061-T 6511和Annealed 1100 Al)承受轴向拉伸、环向内压、轴向-环向混合比例加载时的后继屈服面,将模型预测的结果与文献中的实验结果进行对比。结果表明,所提模型能较好地预测后继屈服面的演化,并能分析其物理机制,为后继屈服面的演化研究提供了一种可行的方法。 |
其他语种文摘
|
The shape and position of the yield surface of a metallic material have a direct bearing on the determination of its plastic deformation. In this paper, the evolution of the yield surface in a tension tension stress space is investigated based on the elasto plastic damage constitutive theory as an endeavor to understand the plastic behavior of metallic materials under biaxial tension. The initial yield surface (IYS) and subsequent yield surfaces are predicted with the consideration of the finite deformation effect and the mixed hardening effect, which shows the vertex effect in the forward part, Bauschinger effect in the rear part, and expansion/contraction, translation and distortion of the subsequent surfaces. For a low work hardening aluminum alloy (Al 6061 T 6511) and a high work hardening aluminum alloy (annealed 1100 Al) under axial, hoop, and combined axial and hoop loading, the theoretical prediction is favorably compared with the experimental results in the literature. The physical mechanism of the evolution of subsequent yield surfaces is elucidated. It provides a feasible method to study the evolution of subsequent yield surfaces. |
来源
|
航空学报
,2012,33(12):2230-2239 【核心库】
|
关键词
|
构元组集模型
;
后继屈服面演化
;
耦合硬化效应
;
尖点效应
;
包氏效应
|
地址
|
1.
中国科学院力学研究所, 非线性国家重点实验室, 北京, 100190
2.
武汉理工大学交通学院, 湖北, 武汉, 430063
3.
中国轻型燃气轮机开发中心, 北京, 100009
|
语种
|
中文 |
ISSN
|
1000-6893 |
学科
|
力学;航空 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:4712303
|
参考文献 共
27
共2页
|
1.
Lin S B. Characterization of yield surfaces using balanced biaxial tests of cruciform plate specimens.
Scripta Metallurgica et Materialia,1993,28(5):617-622
|
CSCD被引
2
次
|
|
|
|
2.
Stout M G. Role of geometry in plastic instability and fracture of tubes and sheet.
Mechanics of Materials,1983,2(1):23-31
|
CSCD被引
1
次
|
|
|
|
3.
Vegter H. A plane stress yield function for anisotropic sheet material by interpolation of biaxial stress states.
International Journal of Plasticity,2006,22(3):557-580
|
CSCD被引
12
次
|
|
|
|
4.
Woodthor J. The anomalous behaviour of aluminium sheet under balanced biaxial tension.
International Journal of Mechanical Sciences,1970,12(4):341-347
|
CSCD被引
10
次
|
|
|
|
5.
Ahmetoglu M. Tube hydroforming: current research, applications and need for training.
Journal of Materials Processing Technology,2000,98(2):224-231
|
CSCD被引
17
次
|
|
|
|
6.
Rees D W A. An examination of yield surface distortion and translation.
Acta Mechanica,1984,52(12):15-40
|
CSCD被引
1
次
|
|
|
|
7.
Phillips A. Yield surfaces and loading surfaces of aluminum and brass: an experimental investigation at room and elevated temperatures.
International Journal of Plasticity,1985,1(1):89-109
|
CSCD被引
3
次
|
|
|
|
8.
Wu H C. On the experimental determination of yield surfaces and some results of annealed 304 stainless steel.
International Journal of Plasticity,1991,7(8):803-826
|
CSCD被引
5
次
|
|
|
|
9.
Khan A S. An experimental study on subsequent yield surface after finite shear prestraining.
International Journal of Plasticity,1993,9(8):889-905
|
CSCD被引
8
次
|
|
|
|
10.
Khan A S. Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation. Part I: a very low work hardening aluminum alloy (Al6061-T 6511).
International Journal of Plasticity,2009,25(9):1611-1625
|
CSCD被引
14
次
|
|
|
|
11.
Khan A S. Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation. Part II: a very high work hardening aluminum alloy (annealed 1100 Al).
International Journal of Plasticity,2010,26(10):1421-1431
|
CSCD被引
8
次
|
|
|
|
12.
Khan A S. Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation. Part III: yield surface in tension tension stress space (Al 6061-T 6511 and annealed 1100 Al).
International Journal of Plasticity,2010,26(10):1432-1441
|
CSCD被引
7
次
|
|
|
|
13.
Kuwabara T. Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension.
Journal of Materials Processing Technology,1998,80/81:517-523
|
CSCD被引
22
次
|
|
|
|
14.
Kuwabara T. Use of abrupt strain path change for determining subsequent yield surface: experimental study with metal sheets.
Acta Materialia,2000,48(9):2071-2079
|
CSCD被引
4
次
|
|
|
|
15.
Kuwabara T. Advances in experiments on metal sheets and tubes in support of constitutive modeling and forming simulations.
International Journal of Plasticity,2007,23(3):385-419
|
CSCD被引
18
次
|
|
|
|
16.
Barlat F. Plane stress yield function for aluminum alloy sheets-Part 1: theory.
International Journal of Plasticity,2003,19(9):1297-1319
|
CSCD被引
83
次
|
|
|
|
17.
Korkolis Y P. Inflation and burst of aluminum tubes. Part II: an advanced yield function including deformation-induced anisotropy.
International Journal of Plasticity,2008,24(9):1625-1637
|
CSCD被引
1
次
|
|
|
|
18.
Peeters B. A theoretical investigation of the influence of dislocation sheets on evolution of yield surfaces in single-phase B.C.C. polycrystals.
Journal of the Mechanics and Physics of Solids,2002,50(4):783-807
|
CSCD被引
2
次
|
|
|
|
19.
Kowalczyk K. Model of plastic anisotropy evolution with texture-dependent yield surface.
International Journal of Plasticity,2004,20(1):19-54
|
CSCD被引
7
次
|
|
|
|
20.
Deng S C. Validation of component assembly model and extension to plasticity.
Theoretical and Applied Fracture Mechanics,2007,47(3):244-259
|
CSCD被引
7
次
|
|
|
|
|