1982-2006年欧亚大陆植被生长季开始时间遥感监测分析
Assessment and Intercomparison of Satellite-derived Start-of-Season (SOS) Measures in Eurasia for 1982-2006
查看参考文献38篇
文摘
|
植被物候是环境条件季节和年际变化最直观、最敏感的生物指示器,物候变化可以反映陆地生态系统对气候变化的快速响应。论文基于1982-2006年连续25年的GIMMS AVHRR NDVI数据,采用动态阈值法、延迟滑动平均法,双Logistic和Savitzky-Golay方法提取欧亚大陆植被的生长季开始时间,并对不同方法的提取结果进行比较和分析。然后以动态阈值法的物候提取结果,研究了1982-2006年期间植被物候变化趋势以及物候对温度变化的响应情况。结果表明:动态阈值法在欧亚大陆地区生长季开始时间提取率高,在纬度上的变化趋势稳定;北方森林/针叶林和苔原地区的生长季开始时间提取结果最稳定,低纬度区域的变率最大。1982-2006年,大部分植被类型的生长季开始时间表现出提早趋势,其中森林覆盖区域提早趋势明显,变化幅度为11.45~15.61 d/25a;除了郁闭式至开放式(> 15%)灌木丛(< 5 m)植被类型外,植被物候和温度表现出负相关关系,变化幅度为1.32~3.47d/℃,这也验证了近几十年气候变暖的趋势。 |
其他语种文摘
|
Vegetation phenology is one of the most direct and sensitive indicators of seasonal and interanual variations of environmental conditions. Phenological changes reflect quick change of terrestrial ecosystems in response to climate change. Satellite remote-sensing techniques capture canopy reflectance and can be used for studies of vegetation phenology. In this study, satellite-derived Start of Season (SOS) dates are obtained from the GIMMS AVHRR NDVI dataset by different methods such as Dynamic Threshold method, Delayed Moving Average methods, Double Logistic analysis and Savitzky-Golay method. The derived SOS data are compared and analyzed for the ecoregions from China to Russia, and the Dynamic Threshold method is decided to be most suitable for Eurasia scale. Based on the analysis of the changes of vegetation phenology and the response of phenology to climate change from 1982 to 2006, it is concluded that the Dynamic Threshold method has high retrieval rate for the SOS dates in Eurasia, and the data show a stable trend along the latitudinal gradient. The retrieved SOS dates for boreal forests and tundra ecosystems are most stable in the long term, while in the vegetation areas of low latitudes the dates show higher variability. It is found that from 1982 to 2006, there is a trend of SOS dates becoming earlier for the majority of vegetation types, and the forest coverage areas show even stronger trend of SOS dates becoming earlier, with a change rate of 11.45-15.61 days/25 years, due to global warming. With the exception of the closed to open (>15%) shrubland (<5 m), for most other types of vegetation, there is a negative correlation between vegetation phenology and the average temperature of the month. In other words, for each one degree increase, there is 1.32-3.47 days decrease to SOS date in spring, which is consistent with global warming in recent years. |
来源
|
地理科学进展
,2012,31(11):1433-1442 【核心库】
|
关键词
|
气候变化
;
物候
;
归一化植被指数
;
生长季开始时间
;
变化趋势
;
温度响应
;
欧亚大陆
|
地址
|
中国科学院对地观测与数字地球科学中心, 北京, 100094
|
语种
|
中文 |
ISSN
|
1007-6301 |
学科
|
植物学 |
基金
|
国家973计划
;
国家自然科学基金
|
文献收藏号
|
CSCD:4700643
|
参考文献 共
38
共2页
|
1.
任国玉. 气候变暖成因研究的历史、现状和不确定性.
地球科学进展,2008,23(10):1084-1091
|
CSCD被引
17
次
|
|
|
|
2.
武永峰. 基于计算机模拟的植物返青期遥感监测方法比较研究.
地球科学进展,2005,20(7):724-731
|
CSCD被引
17
次
|
|
|
|
3.
Schwartz M R. Onset of spring starting earlier across the Northern Hemisphere.
Global Change Biology,2006,12(2):343-351
|
CSCD被引
57
次
|
|
|
|
4.
Myneni R. Increased plant growth in the northern high latitudes from 1981 to 1991.
Nature,1997,386(6626):698-702
|
CSCD被引
375
次
|
|
|
|
5.
Delbart N. Remote sensing of spring phenology in boreal regions: A free of snow-effect method using NOAA-AVHRR and SPOT-VGT data (1982-2004).
Remote Sensing of Environment,2006,101(1):52-62
|
CSCD被引
37
次
|
|
|
|
6.
Zhang X. Global vegetation phenology from moderate resolution imaging spectroradiometer (MODIS): evaluation of global patterns and comparison with in situ measurements.
Journal of Geophysical Research,2006,111(G4):G04017
|
CSCD被引
21
次
|
|
|
|
7.
Studer S. A comparative study of satellite and ground-based phenology.
International Journal of Biometeorology,2007,51(5):405-414
|
CSCD被引
13
次
|
|
|
|
8.
Schwartz M. Assessing satellite-derived start-of-season measures in the conterminous USA.
International Journal of Climatology,2002,22(14):1793-1805
|
CSCD被引
32
次
|
|
|
|
9.
Maignan F. Interannual vegetation phenology estimates from global AVHRR measurements: Comparison with in situ data and applications.
Remote Sensing of Environment,2008,112(2):496-505
|
CSCD被引
5
次
|
|
|
|
10.
White M. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006.
Global Change Biology,2009,15(10):2335-2359
|
CSCD被引
71
次
|
|
|
|
11.
Zhou L. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999.
Journal of Geophysical Research,2001,106(D17):20069-20083
|
CSCD被引
289
次
|
|
|
|
12.
Studer S. Inter-annual variability and decadal trends in alpine spring phenology: A multivariate analysis approach.
Climatic Change,2005,73(3):395-414
|
CSCD被引
7
次
|
|
|
|
13.
Piao S. Net carbon dioxide losses of northern ecosystems in response to autumn warming.
Nature,2008,451(7174):49-52
|
CSCD被引
109
次
|
|
|
|
14.
Cleland E. Diverse responses of phenology to global changes in a grassland ecosystem.
Proceedings of the National Academy of Sciences,2006,103(37):13740
|
CSCD被引
69
次
|
|
|
|
15.
Piao S. Variations in satellite-derived phenology in China's temperate vegetation.
Global Change Biology,2006,12(4):672-685
|
CSCD被引
197
次
|
|
|
|
16.
Sparks T. An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK.
International Journal of Biometeorology,2000,44(2):82-87
|
CSCD被引
33
次
|
|
|
|
17.
Phenology Kramer K.
Growth of European trees in relation to climate change,1996
|
CSCD被引
1
次
|
|
|
|
18.
Rotzer T. Phenological maps of Europe.
Climate Research,2001,18(3):249-257
|
CSCD被引
4
次
|
|
|
|
19.
于嵘.
基于遥感时序数据的中国陆地植被覆盖变化分析研究,2006
|
CSCD被引
7
次
|
|
|
|
20.
范锦龙.
复种指数遥感监测方法研究,2003
|
CSCD被引
14
次
|
|
|
|
|